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Abstract—Cardiac motion has been tracked using various 
methods, which vary in their invasiveness and dimensionality. 
One such noninvasive modality for cardiac motion tracking is 
ultrasound. Three-dimensional ultrasound motion tracking has 
been demonstrated using detected data at low volume rates. 
However, the effects of volume rate, kernel size, and data type 
(raw and detected) have not been sufficiently explored. First 
comparisons are made within the stated variables for 3-D 
speckle tracking.

Volumetric data were obtained in a raw, baseband format 
using a matrix array attached to a high parallel receive beam 
count scanner. The scanner was used to acquire phantom and 
human in vivo cardiac volumetric data at 1000-Hz volume rates. 
Motion was tracked using phase-sensitive normalized cross-cor-
relation. Subsample estimation in the lateral and elevational 
dimensions used the grid-slopes algorithm.

The effects of frame rate, kernel size, and data type on 3-D 
tracking are shown. In general, the results show improvement 
of motion estimates at volume rates up to 200 Hz, above which 
they become stable. However, peak and pixel hopping continue 
to decrease at volume rates higher than 200 Hz. The tracking 
method and data show, qualitatively, good temporal and spa-
tial stability (for independent kernels) at high volume rates.

I. Introduction

Cardiac tissue motion is potentially the most relevant 
information for cardiac diagnostics because it repre-

sents tissue efficacy [1]. Cardiac motion is used to assess 
overall function, ischemia, infarct, and arrhythmia. Mo-
tion assessment is performed qualitatively and quantita-
tively, but quantitative methods (for the left ventricle) are 
more reliable [2]. A notable quantitative metric for cardiac 
function is the change in wall thickness (strain) between 
end-diastole and end-systole, which correlates well with 
cardiac function [3]. Strain is an attractive metric of car-
diac function because it is easily measurable by comparing 
multiple anatomic images provided by imaging modalities 
such as magnetic resonance (MR) or ultrasound. In princi-
ple, the strain between end-diastole and end-systole could 
be calculated using only 2 images, in practice the rate 
of strain is usually calculated by estimating the spatial-

derivative of velocity estimates. The strain curve through 
time can be calculated as the temporal integral of the 
strain rate for a given spatial region [4], [5]. Therefore, 
strain and strain rate quality are directly related to the 
ability to measure cardiac tissue velocities.

Cardiac tissues experience a range of velocities during 
the cardiac cycle. Cardiac velocities have been measured 
using MR for all 3 dimensions of motion in the cardiac 
coordinate system by Delfino et al. [6]. They report peak 
velocities, in humans, of 6.5 ± 2.2, 3.2 ± 1.2, and 12.0 ± 
3.1 cm/s in the radial, circumferential, and longitudinal 
dimensions, respectively. Similar, but slightly lower, veloc-
ities have been measured by others [7], [8]. Although the 
above measurements were cited from MR results, various 
methods have been developed to capture cardiac motion 
for both research and clinical purposes.

Ultrasound has been used to measure cardiac dynamics 
in quantitative and qualitative manners using M-mode and 
A-mode methods since the late 1940s [9]. In the 1970s, the 
development of B-mode ultrasound allowed an increased 
level of qualitative assessment of global and local cardiac 
motion [9].

Sonomicrometry, developed in the 1970s, uses small 
piezoelectric crystals embedded in the myocardial surface; 
the crystals monitor their positions relative to partner 
crystals embedded at nearby locations. The attached crys-
tal’s time-of-flight data can be reconstructed to acquire 
estimates of segment dimensions, segment shortening ve-
locities, and metrics of segment power and stroke work 
[10]. Sonomicrometry provided much of the initial data on 
cardiac motion and is still regarded as the gold standard 
for myocardial motion tracking [11].

Myocardial motion has also been tracked by implanting 
radiopaque beads into the myocardium with known geom-
etry. The beads are imaged at a frame rate of 75 Hz using 
biplane fluoroscopy [12], [13]. The radiopaque beads’ posi-
tions through time can be reconstructed in 3 dimensions 
to analyze complex myocardial modes, such as rotational 
dynamics.

Unfortunately, both sonomicrometer and radiopaque 
bead implantation are highly invasive procedures. There-
fore, they have been primarily used to track motion in the 
canine heart. Although a useful tool for research, these 
techniques are not practical for clinical cardiac motion 
diagnostics. Besides lacking clinical practicality, the im-
plantation process causes about 1 mm of scarring around 
the implanted object [10], which almost certainly alters 
cardiac motion.
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A relatively new technique uses biplane fluoroscopy—
but rather than tracking implanted radiopaque beads, it 
noninvasively tracks distinct features such as coronary ar-
teries [14], [15]. However, this technique has not yet found 
wide clinical utility.

Another emerging technique is motion tracking with 
computed tomography (CT). The potential for tomo-
graphic velocity estimation has been known for almost 2 
decades [16]. The recent commercialization of multidetec-
tor and multislice CT scanners may finally result in the 
realization of CT-based clinical motion analysis [17].

For clinical cardiac motion analysis, there are 2 pri-
mary modalities: MR and ultrasound. MR imaging has 
been used almost since its inception to investigate motion 
[18], [19]. Motion can be tracked with MR using either 
phase methods or MR tagging methods [20]. In a general 
sense, these methods can be compared with ultrasound 
where MR phase encoding is analogous to ultrasound’s 
autocorrelation methods, and MR tagging is analogous to 
ultrasound speckle tracking.

Although MR tracks motion well and has been able 
to track all 3 dimensions of motion since its inception, 
MR struggles with poor temporal resolution. The poor 
temporal resolution of MR has been circumvented by re-
constructing 3-D cardiac motion across multiple cardiac 
cycles. New MR scanners with volume rates as fast as 1 
volume per second have been demonstrated [21], but these 
rates are still too slow to capture all the necessary data 
within a single heart cycle.

Motion can be tracked with ultrasound using phase 
changes or the intrinsic tissue texture called speckle. 
Variations on both of these techniques have been around 
since the 1980s [22], [23]. The original motion tracking 
techniques employed on ultrasound data were along the 
transducer’s axial dimension.

The axial dimension is typically the sole dimension used 
for clinical velocity and displacement estimates, and these 
estimates are almost always accomplished with Doppler or 
autocorrelation methods [23], [24]. Despite the clinical suc-
cess of autocorrelation methods, they are limited to the axial 
dimension. As an alternative approach and a way to track in 
multiple dimensions, the speckle tracking methods originally 
investigated by Embree and O’Brien were adapted to 2-D 
displacement tracking by Trahey et al. [25]. From here, many 
variations of 1-D and 2-D speckle tracking algorithms for 
motion displacement have been applied to ultrasound imag-
ing. These variations include block matching with a wide va-
riety of objective functions, optical flow methods and mixed 
methods that combine different tracking techniques [26]–[32]. 
With the introduction of displacement estimation in 2 spa-
tial dimensions, the motion lateral to the transducer’s point 
spread function could be estimated. However, there is a well-
characterized, jitter-based performance penalty for tracking 
along nonaxial dimensions due to lower spatial frequency 
content and lack of lateral and elevational phase informa-
tion [33]. Fortunately, the spatial and tracking resolution in 
ultrasound competes well with or outperforms other modal-
ities. Because of this, researchers and clinicians have had 

widespread success with 2-D ultrasound speckle tracking [1]. 
Despite the success of 2-D speckle tracking, the inability to 
track through plane motion means that 2-D speckle tracking 
remains an incomplete solution.

The solution to through plane motion in displacement 
tracking and the hope of much of the ultrasound research 
community is volumetric ultrasound. Volumetric ultra-
sound has been present within the community for more 
than 2 decades [34]. Despite 3-D ultrasound’s longstand-
ing presence, it has taken some time for it to become 
clinically widespread. Advanced ultrasound techniques 
that use speckle tracking—it has been hypothesized—will 
be particularly benefited by 3-D speckle tracking and the 
resulting 3-D motion vector [35], [36].

Because of the importance of 3-D speckle tracking, 
many researchers have devised schemes to create 3-D ra-
dio frequency data sets or have simulated these raw 3-D 
data sets to study the characteristics of 3-D structures or 
3-D tracking techniques.

Some attempts have been made to acquire volumetric 
data by mechanical translation (or rotation) of 1-D arrays 
[37]–[39]. Although these techniques show some promise, 
they invariably suffer from some combination of poor tem-
poral and spatial resolution. Because of this, 3-D speckle 
tracking in dynamic systems of interest (such as the heart) 
remains elusive.

Some notable simulations and phantom investigations 
into 3-D speckle structure have been performed by Bash-
ford and von Ramm [40], Meunier [41], Chen et al. [36], 
and Yu et al. [42]. Yu et al. have shown that, for deforma-
tions (in a compressional sense) larger than 2%, detected 
ultrasonic displacement tracking will yield better results 
than raw echo tracking methods. Yu et al.’s results indi-
cate that the data type employed so far for 3-D tracking 
(i.e., detected data), which have all been in the heart, are 
optimal based on the low frame rates used.

The first group to demonstrate 3-D detected speckle 
tracking was Morsy and von Ramm [43] and more recently 
Kuo and von Ramm [44]. With the full scale commercial-
ization of 3-D clinical scanners, the last few years have 
seen many additional studies employing 3-D speckle track-
ing on detected echo data [45]–[47]. Although these meth-
ods have been successful, they have used detected data, 
which eliminates one of ultrasound’s greatest strengths: 
axial phase information.

In this paper, 3-D speckle tracking on raw data is vali-
dated with a high parallel receive beam1 count (64-to-1) 
clinical scanner [49] using a high channel count matrix 
array [50]. Specifically, 3-D speckle tracking is validated 
with phantom studies. The performance and feasibility of 
speckle tracking with raw data in a dynamic system, the 
heart, is demonstrated. Comparisons are made among dif-
ferent kernel sizes and volume rates.
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1	Parallel receive beamforming was originally proposed in the early 
1980s by Shattuck et al. [48]. Parallel receive beamforming usually in-
volves identical parallel beamformers operating in tandem so that multi-
ple lines can be formed from a single transmit. It is useful in applications 
where frame rate is important.



Additionally, this work compares the performance of 
motion tracking using detected and raw B-mode echo 
data. Although the echo data used in this work were ac-
quired in an in-phase and quadrature (IQ) format, sev-
eral works have shown that there is little difference in the 
performance between radio-frequency (RF) and IQ data 
when proper algorithms are employed [51], [52]. In this 
paper the label “raw” will refer to data containing phase 
information (IQ or RF), while the label “detected” will re-
fer to echo magnitude data displayed in B-mode images.

II. Methods

A. Method: Data Acquisition

Ultrasound volumetric, baseband data were acquired 
using a Siemens SC2000 imaging system and a 4Z1C ma-
trix array (Siemens Healthcare Sector, Ultrasound Busi-
ness Unit, Mountain View, CA) [49], [50]. The scanner 
was used to acquire both in vivo 3-D cardiac data and 3-D 
phantom data. Data sets were acquired with a 2.8-MHz 
transmit frequency and a 1° azimuthal and elevational re-
ceive beam spacing. Data were acquired down to 14 cm. 
Each data set’s region of interest (ROI) and pulse repeti-
tion frequency (PRF) were modified based on the desired 
task. All data were acquired and then processed offline.

Cardiac data sets were acquired on one of the authors 
(BB), a healthy 27-year-old male with no known cardio-
vascular defects. The cardiac data were acquired using 
parasternal, left ventricle, short-axis views. It was not pos-
sible to acquire matched ECG data at the time of data 
acquisition. All temporal registration of the data with car-
diac physiology was accomplished by inspecting M-mode 
sequences reconstructed offline.

Phantom data sets were acquired in a diffusely scat-
tering, speckle-generating medium. A speckle-generating 
medium contains a high scatterer density at the level of 
the resolution cell of the imaging system. As the scatterer 
density increases, the underlying image statistics converge 
to well-described first- and second-order moments, pro-
ducing fully developed speckle [53]. The phantom’s at-
tenuation was 0.5 db/cm/MHz.

B. Method: 3-D Speckle Tracking Using Phase-Sensitive 
Normalized Cross-Correlation

A graphical depiction of 3-D speckle tracking can be 
seen in Fig. 1. As discussed in the introduction, many 
algorithms have been proposed for ultrasound time delay 
estimation. The time delay estimator implemented for this 
work was phase-sensitive normalized cross-correlation. 
Phase-sensitive cross-correlation was originally introduced 
to ultrasound literature by Wear and Popp [54] and was 
popularized by O’Donnell et al. [55].

The basic assumption of cross-correlation and similar 
time delay estimators is that the local speckle pattern—
caused by the geometry of scatterers in a given tissue vol-

ume—remains constant and only undergoes bulk transla-
tion [56]. Using this assumption, it is reasonable to define 
a signal as the convolution of the system’s point spread 
function, F(), with a scatterer function, H(). A second 
signal is similarly defined except a shifted version of the 
scatter function is used. In ultrasonic imaging, the point 
spread function is not often stationary. However, over a 
small region, returned echo signals can be approximated 
by
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where ⊗ denotes the convolution operator, and t, x, and 
y indicate time, lateral, and elevational dimensions, re-
spectively. The n and m are the discrete slow time indices. 
Finally, the delays between the 2 signals’ dimensions can 
be described by τn+m − τn, ξn+m − ξn, and ηn+m − ηn rela-
tive to the respective dimension.

Generally, the shorter the temporal duration between a 
signal sn and sn+m, the better the approximation of scat-
terer bulk motion within a resolution cell.

Based on this representation of 2 signals, the corre-
sponding 3-D normalized cross-correlation function is de-
fined in (2), see next page, and was implemented in Mat-
lab (MathWorks, Inc., Natick, MA).

When the normalized cross-correlation function is used 
as a time-delay estimator, the best time delay is assumed 
to be the maxima of the function. However, the normal-
ized cross-correlation function shown in (2) is complex 
(because it operates on baseband data), and the best pixi-
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Fig. 1. This figure demonstrates the process of 3-D speckle tracking. 
3-D speckle tracking identifies a 3-D kernel within an initial volume. 
Within a second volume, at a later time, the closest match to the kernel 
is identified, and the corresponding location is assumed to represent the 
displacement. Usually the search is performed inside a subset of the sec-
ond volume for computational efficiency.



lated time-delay estimate will be indicated by the maxi-
mum magnitude of the cross-correlation function, which 
is

	 r r( , , ) =| ( , , ) |t x y t x ymag 	 (3)
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In the proposed method, interpolation is not performed 
to increase the number of samples either before or af-
ter signal correlation. Because no samples are added, the 
time-delay estimates are coarse. The coarseness of the es-
timates in the various dimensions is mitigated in 2 ways. 
First, the coarseness of axial time-delay estimates is elimi-
nated using the phase-sensitivity of the cross-correlation 
function. Cross-correlation of complex ultrasound data re-
sults in averaging the phase difference over a region speci-
fied by the kernel size. The axial estimates may be refined 
optimally by using the phase at the point of maximum 
magnitude. This process can be considered a spatial vari-
ant of common autocorrelation methods used for axial dis-
placement estimation, which features improved SNR and 
eliminates phase wrapping. Phase wrapping is eliminated 
by using the gross axial displacement from the maxima of 
the cross-correlation function to determine how far the tis-
sue has displaced in excess of the ±π displacement limit.

Briefly and most simply, the axial delay based on the 
cross-correlation functions phase information is calculated 
by
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The tmax, xmax, and ymax are the indices that maximize 
(3).

Phase information only exists along the direction of 
wave propagation. Therefore, time-delay estimates in the 
lateral and elevational dimensions were accomplished 
using subsample interpolation, which is explained next. 
(Subsample interpolation was also used for axial refine-
ment of motion estimates derived from detected data.)

C. Methods: Subsample Interpolation Using Grid Slopes

Subsample interpolation is considered a computational-
ly efficient method for calculating finer delays than delays 
found only by direct use of a time-delay estimator [52], 
[57]. Many subsample interpolation methods have been 
employed in ultrasonic displacement estimation including 
parabolic [57], raised cosine [58], spline-based methods 
[59], [60], and the grid slopes algorithm [51].

The grid slopes algorithm was chosen in this work to 
refine time delay estimates in both the lateral and ele-
vational dimensions. The grid-slopes algorithm has been 
characterized and used in previous works [61], [62]. These 
works show the algorithm to be effective when a given 
kernel dimension has only a small number of samples. A 
small sample count can be problematic because a given 
dimension of the correlation function is significantly in-
fluenced by new pixels introduced and eliminated at each 
lag.

The grid slopes algorithm mitigates this problem by 
normalizing the delay estimates based on the zero-lag 
cross-correlation function. The underlying assumption 
behind this normalization is that the normalized cross-
correlation function does not change shape between dif-
ferent time lags (i.e., bulk motion). However, at a given 
time lag, the cross-correlation function may be shifted in 
a way that the maximum occurs between 2 samples of the 
correlation function. (It should be noted that the zero-lag 
cross-correlation function referenced above should not be 
confused with the auto-correlation function.)

The grid slopes algorithm used in this work was modi-
fied from the algorithm presented in previous works, which 
used the grid slopes algorithm in conjunction with a sum-
absolute-difference (SAD) time-delay estimator. The grid 
slopes algorithm used with normalized cross correlation 
was
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where rmag max is the peak of the normalized cross-correla-
tion function, and rmag 2 i

 is the next highest value of the 
cross-correlation function along the dimension indexed by 
i. For the normalization values in the denominator, the 1 
indicates the zero-lag peak, and the rmag 02 i

 term is the 
zero-lag normalized cross-correlation value that shares the 
same index in the zero-lag cross correlation function as 
rmag 2 i

 has in the mth lag cross-correlation function. The i 
will index either the lateral or elevational dimension. The 
i may also index the axial dimension when the algorithm 
is used on detected data. A graphical depiction of the 
points used to calculate the subsample estimate can be 
seen in Fig. 2.

D. Methods: Phantom Validation

To validate 3-D motion tracking and test the limits 
of the chosen algorithm, a custom translation stage was 
constructed to perform phantom experiments with known 
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translation distances and directions through 3-D space. In 
addition to the translation stage, an accompanying cali-
bration phantom was also constructed.

The stage consisted of a linear translation stage and 2 
rotational stages positioned orthogonally to each other. 
The translation stage was a 2-in. compact translation 
stage (Thorlabs, Newton, NJ). The 2 rotational stages 
were continuous rotation mounts (Thorlabs). The rota-
tion stages allowed the transducer to be rotated around 
the transducer’s lateral and axial axes. By adjusting the 
rotation about the axial axis, different fixed ratios of lat-
eral versus elevational motion could be created with a 
single linear translation stage. The translation stage was 
designed to be portable.

A calibration phantom was designed to ensure trans-
ducer orientation before imaging the speckle-generating 
phantom. The calibration phantom was an acrylic block. 
In the top of the block was a 4 × 4 grid of pins with 1-cm 
spacing in the lateral and elevational dimensions. The pins 
tip width was 37 ± 10 μm. (The pins acted as point tar-
gets for the lateral and elevational dimensions. The cross-
sectional area of the pin tips was 3 orders of magnitude 
less than the cross-sectional area of the lateral-elevational 
point spread function.)

The calibration phantom and an accompanying cali-
bration block were used to orient the translation stage 
for lateral motion. The orientation was accomplished by 
observing an ultrasonic C-mode image of the point tar-
gets. The point targets were aligned along the lateral and 
elevational dimensions of the transducer. Alignment along 
of the grid was accomplished visually, and for the duration 
of the experiment all angles were referenced relative to 
the calibration angle, which was defined as purely lateral 

transducer motion. The other 2 transducer orientations 
for which data were acquired were 22.5° and 45° rotated 
relative to pure lateral motion. The translation stage was 
translated in increments of 100 μm, and the first millime-
ter of translation steps were reported.

Speckle tracking was performed at an 8-cm range be-
cause this was the depth of transmit focus used when ac-
quiring the in vivo cardiac data sets and is a realistic 
transmit depth for cardiac imaging. The kernel size was 
2.2 × 2.8 × 2.8 mm for the axial, lateral, and elevational 
dimensions, respectively (2 beams in both the lateral and 
elevational kernel dimensions). The search region dimen-
sions were 3.4 × 7 × 7 mm. The entire volume acquired 
for each transducer position was 20° × 18° and represented 
a grid of 4 × 3 transmit groups. The 4 × 3 grid of transmit 
beams was centered about the transducer’s axis (allowing 
for the use of the paraxial approximation). For each of 
the transducer’s translatory positions, 32 volumes were 
acquired and averaged offline. Additionally, data were ac-
quired at 3 independent regions of a speckle-generating 
phantom providing 36 independent speckle realizations for 
each case.

All displacement estimates were postprocessed to re-
move peak hops in the axial direction and pixel hops in the 
lateral and elevational dimension. Axial peak hopping ar-
tifacts were removed by eliminating displacements in error 
by more than ±λ/2. Lateral and elevational pixel hopping 
artifacts were removed by eliminating any displacements 
in error by more than half the pixel spacing in a given 
dimension. In all cases, if a given dimension was found to 
have an error that was deemed to be due to pixel or peak 
hopping, the displacements–in all 3 dimensions–for that 
estimate were removed from the analyses. A threshold of 
0.95 on the correlation level was applied.

E. Methods: Cardiac Speckle Tracking

Four 3-D in vivo cardiac ultrasound data sets were ac-
quired with a ROI of 10° × 12° and a volume rate of 1000 Hz 
for 1 s. Three different kernel dimensions were analyzed. 
The average kernel sizes used were 1.2 × .85 × .85 mm, 
2.2 × 1.7 × 1.7 mm, and 4.3 × 3.5 × 3.5 mm (correspond-
ing to lateral and elevational beamwidths of 1, 2, and 4 
beams, respectively) with slight variability in the lateral 
and elevational dimensions owing to depth dependency 
of beam width and different depths of the myocardium 
between acquisitions. The average depth of the distal 
wall of the left ventricle across the 4 data sets was 5.2 cm 
(and specifically 4.6 cm, 4.7 cm, 5.6 cm, and 5.9 cm). The 
search regions corresponding to each kernel were defined 
so that a velocity of 20 cm/s (or faster, based on discreti-
zation) was detectable for all dimensions. This allows for 
larger velocities than those seen in the literature for axial 
and circumferential motion; however, the tracking occurs 
in the transducer’s coordinate system and so it is not pos-
sible to know a priori more precise velocity maxima.

It can be difficult to determine peak and pixel hop-
ping for in vivo tracking because the true displacement is 
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Fig. 2. The figure demonstrates the bulk translation of the cross-corre-
lation function (and the tissue scatterers) between the cross-correlation 
function with no time lag between the correlated signals and lag N be-
tween the 2 signals. It can be seen in the figure that the lag 0 cross-cor-
relation is not symmetric and therefore not an autocorrelation function. 
The peak of the lag 0 cross-correlation will always be at 0. The peak of 
the lag N cross-correlation will be at Δτ, which will likely be between 
2 sampled points. The sampled points that are used in the grid slopes 
subsample estimator are labeled in the figure and correspond to the 
points indicated in (5).



rarely known. Therefore, a given displacement estimate 
was characterized as a peak or pixel hop if it met one of 
2 criteria. The first possible criterion for categorizing a 
displacement estimate as a peak or pixel hop was the case 
when the displacement in a given dimension tracked to the 
edge of the search region. The second criterion for catego-
rizing a displacement as a peak or pixel hop was the case 
when the 3-D velocity magnitude exceeded 22.9 cm/s. The 
threshold was based on the maximum diastolic velocity 
(mean + standard deviation) suggested from the results 
reported by Delfino et al. [6] assuming peak velocities oc-
cur simultaneously in all dimensions. The actual peak ve-
locity magnitude calculated from the results in [6] was 
17.9 m/s, and an additional 5 m/s was added in order 
not to disguise any methodologically based velocity differ-
ences. For both criteria, if a peak or pixel hop was found, 
all dimensions for that track were removed from analysis.

Because there were no known values for the in vivo 
cardiac motion tracking for any of the data acquired, 3 
comparisons were performed to illuminate PRF dependent 
patterns in the data. The first 2 comparisons calculated 
the mean-absolute-difference (MAD) between the veloci-
ties throughout the cardiac cycle at a given volume rate 
against a constructed version at the same volume rate 
from the velocity estimates determined from the highest 
volume rate data. The first comparison compared motion 
estimates derived from downsampled data against the ve-
locity estimates calculated from raw 1000-Hz volume rate 
data. The second comparison was identical, except the 
baseline estimate used the velocity estimates calculated 
from detected 1000-Hz volume rate data. The estimates 
derived from the highest volume rate data were used for 
comparisons because volume-to-volume displacement is 
smallest and volume-to-volume correlation is highest. Low 
displacement and high correlation tracking is expected to 
produce accurate motion estimates based on literature re-
sults [63] and the phantom results that will be shown.

The data used for comparison were created from the 
baseline velocity estimates from high frame rate data by 
low-pass filtering the velocity estimates with a rectangu-
lar window with unity amplitude and length N and then 
decimating by a factor of N where

	 N
F
F

= .high

low
	 (7)

For the comparisons in this work, N was always an in-
teger, Fhigh was always 1000 Hz and the Flow was allowed 
to be frequencies between 50 and 1000 Hz, subject to the 
described integer restriction. The literature indicates that, 
for cardiac imaging with a volume rate of 1000 Hz, the 
data processed in the raw format should perform better 
axially and nearly identically in the other 2 dimensions 
[33], [42]. However, despite the expectation that the 1000-
Hz volume rate raw data should have the most accurate 
velocity estimates, it is necessary to compare raw data 
against constructed data detected and vice versa to avoid 
issues with data correlation. The third and final analysis 

was a direct comparison between velocity estimates de-
rived from raw versus detected data at a given volume 
rate.

The comparisons were performed using data from 4 dif-
ferent in vivo data sets from the stated individual. All 
data used for the comparisons were taken from spatially 
independent kernels that remained within the myocardium 
through the entire cardiac cycle. Thirty-two independent 
kernels were realizable for the smallest kernel dimension, 
24 for the mid-sized kernel, and 8 spatially independent 
kernels for the largest kernel. For the small and mid-sized 
kernels tracked at a volume rate of 67 Hz or below, only 
16 and 12 independent kernels, respectively, were available 
for comparisons. For the largest kernel dimensions, 8 inde-
pendent kernels were always available for comparison.

F. Methods: Cyclical Cardiac Speckle Stability

3-D in vivo cardiac ultrasound data were acquired with 
an ROI of 5° × 6°, and a 200-Hz volume rate for 5 s. The 
approximate kernel dimensions for performing the normal-
ized cross-correlations were 2.2 mm × 1.7 mm × 1.7 mm. 
The search region was defined as the full extent of the 
transmit event (a 30-to-1 parallel receive beam group) 
within which a given kernel was defined.

Within these data sets, kernels–originating clearly 
within slow-filling diastole or systole as defined by M-
mode inspection–were chosen and then the chosen kernels 
were used as the tracking kernel for all 5 s of discrete time 
lags.

The analysis conducted for this experiment contrasts 
with normal tracking where a kernel is usually only tracked 
across a small temporal lag. The process is expressed as

	 F n n mm t x y m( ) = ( , , ),max| |r + " .	 (8)

The correlation values reported did not undergo sub-
sample interpolation or any other filtering process.

III. Results

A. Results: Phantom Translation

The qualitative calibration of the transducer’s orienta-
tion can be seen in the C-mode image in Fig. 3. The large 
artifact in the lower right of the pin grid was a reflection 
that could not be removed. After calibration and data 
acquisition with known translation, 3-D speckle tracking 
using the described algorithm was performed. The results 
of speckle tracking can be seen in Fig. 4, where the rota-
tions of the point spread function are 0°, 22.5°, and 45°. 
The agreement of the tracked and predicted values is gen-
erally within the range of the standard deviation. The 
standard deviations for the lateral and elevational track-
ing are within the expected jitter magnitude for tracking 
nonaxial displacements [33], [64].
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B. Results: 3-D In Vivo Cardiac Displacement Tracking

The plots shown in Fig. 5 show direct comparison of 
same volume rate tracks from raw and detected methods. 
These plots indicate that, for the axial dimension, the rel-
ative performance of raw and detected tracking methods 
is constant at volume rates greater than about 100 Hz, 
allowing for some dependency on kernel size. The con-
stant performance plateau degrades sooner for the smaller 
kernel.

The collection of plots shown in Figs. 6 and 7 pres-
ent the MAD between the velocity estimated from raw 
and detected data. Fig. 6 shows the MAD for raw and 
detected data compared against velocities estimated from 
raw, 1000-Hz volume rate data. Fig. 7 shows the MAD 
comparison between the velocities calculated using 2 data 
types against velocities calculated using detected 1000-Hz 
volume rate data.

In addition to the quality of the estimates, peak and 
pixel hopping is also a major quality factor when deter-
mining optimum tracking. The percentage of peak or pixel 
hops for the different cases is shown in Fig. 8. Peak and 
pixel hopping are not distinguished in the figure, and the 
percentage represents the number of times a peak or pixel 
hop occurs in at least one of the 3 tracked dimensions for 
a given estimate. There was less hopping when tracking is 
performed with raw data for the 2 smallest kernels. Larger 
kernels showed less peak and pixel hopping as well.

Direct comparison between the in vivo and phantom 
results is difficult. One of the primary reasons comparison 

is difficult is the difference in expected estimation vari-
ance in the lateral and elevational dimensions due to the 
change in F/# over depth for cardiac imaging. The lat-
eral and elevational variance has been shown to be closely 
modeled as 40(f/#)2 [54]. The phantom data was tracked 
near 8 cm, while the left ventricle free wall was between 
4 and 5 cm.

C. Results: In Vivo Cardiac Displacement Spatiotemporal 
Correlation

Additional qualitative metrics of motion tracking are 
demonstrated in the following figures, which show spa-
tiotemporal correlation of the data and the tracking al-
gorithm.

The first set of figures, Fig. 9, shows the magnitude of 
the zero-lag point of the normalized cross-correlation as 
a function of time and a matched M-mode image. In this 
case, a constant kernel was used to track the motion at 
all time points. A kernel originating during the slow filling 
portion of diastole as indicated by the M-mode data, and 
the rapid contraction of systole were both defined. The 
plots show the correlation across multiple heart cycles. 
There data were acquired with a volume rate of 200 Hz 
for 5  s. The results clearly show the cyclical nature of 
the speckle through 3-dimensions throughout the cardiac 
cycle. Additionally, the results show the relative stability 
and slow mobility of the scatterers during slow-filling di-
astole and the rapid decorrelation of the scatterers during 
systole. Finally, there is a consistent recorrelation of the 
scatterers as the heart passes through the phase of the 
cardiac cycle where each kernel originated.

In addition to the cyclical speckle stability just shown, 
the temporal reproducibility of complex spatial displace-
ment patterns between cardiac cycles can be seen in Fig. 
10 and can also be considered a qualitative metric of track-
ing performance. The figure shows the cumulative summa-
tion of the displacements tracked from a single location 
through 2 cardiac cycles. It should be noted that pixel-
hopping artifacts were diminished with a 5-point median 
filter before cumulative summation, and the data were ac-
quired at a 200-Hz volume rate. The results also show the 
better reproducibility of the motion in the axial dimen-
sion when compared with the other 2 dimensions. This 
is in part due to estimation jitter, but additionally, for 
parasternal views of the heart, transducer motion between 
cycles will have a more dominant effect on the lateral and 
elevational dimensions than the axial dimension.

Another qualitative metric of performance is shown in 
Fig. 11, which shows the displacement through time of 2 
spatially adjacent but independent kernels during a single 
cardiac cycle. The figure demonstrates the spatial stability 
of the data as well as the proposed algorithm’s ability to 
track the motion. No algorithm was applied to correct for 
peak hopping before cumulative summation. The images 
show the spatial reproducibility of fine motion, but also 
the effect of peak hopping and jitter as the positions of the 
2 kernels appear to diverge throughout the cardiac cycle.
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Fig. 3. The figure shows a screen shot of the C-mode image at the depth 
of the pins. The image demonstrates the qualitative calibration of the 
translation stage before any phantom data were acquired. The horizontal 
lines shows the lateral orientation of the transducer, and the vertical 
lines show the elevational orientation of the transducer.



IV. Discussion

Three-dimensional speckle tracking using raw data was 
validated with phantom experiments. The results of the 
phantom tracking validation demonstrate the basic accu-
racy of the proposed method for estimating motion in the 
lateral and elevational dimensions, which is particularly 
important because the grid-slopes algorithm had never 
been implemented for 3-D coarsely sampled data.

In addition to phantom results, results have been pro-
vided from in vivo cardiac motion tracking. Because the 
in vivo tracking results lack a known value, the discussion 
for these results—which proceeds below—will progress de-
liberately to determine clearly appropriate inferences from 
the data. The 3 comparisons will be discussed: the effect 
of data type (raw or detected) when compared with the 
same data type, the effect of comparing raw or detected 
data against the alternative data type, and comparing ve-
locity estimates of both data types from the same volume 
rate.

The following discussion pertains to tracking results 
shown in Fig. 6 and Fig. 7. When the acquired cardiac 
data are tracked in a given form (raw or detected) and 
compared against the same data format tracked at a lower 
volume rate, there is a decrease in the MAD as a function 
of increasing volume rate. The results for the MAD com-
parison for volume rates lower than about 100 to 200 Hz 
matches well with the MAD comparison between opposite 
data types (raw compared with detected and vice ver-
sa). However, for all dimensions of comparison, there is 
a decrease in the value of the MAD as the volume rate 
increases from 200 Hz to 1000 Hz. This trend could be 
misleading if any given figure were to be considered alone. 
(For example, it could be erroneously inferred that both 
detected and raw data types each track better than the 
other.) However, the decrease in the MAD comparison 
between low volume rate data and high volume rate data 
of the same type is in actuality a distraction. There is too 
much direct correlation of the displacement estimates ow-
ing to the volume-to-volume speckle stability at such high 
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Fig. 4. This figure shows the results of 3-D speckle tracking in a phantom with known translatory distances. The rows indicate the perceived rota-
tion of the translation direction based on rotation of the transducer. The tracking dimensions are sorted by column. The kernel size for the phantom 
tracking was 2.2 × 2.8 × 2.8 mm. Each plot shows the mean and standard deviation for each tracking location.



volume rates. Therefore, there is an overestimation of the 
similarity between estimates derived from the same data 
type. Although it is necessary to have correlation between 
volumes to use speckle-tracking methods, the combination 
of correlated speckle and the use of the same data type for 
comparison results in difficult interdependencies, which 
make fair inferences about tracking behavior difficult.

More interesting than the results from direct data type 
comparisons are the comparisons across data types (raw 
compared with detected and vice versa), which can be 
seen in Figs. 6 and 7. Both of the cross data compari-
sons use the highest volume rate, 1000 Hz, velocity esti-
mates as a best case for comparisons. These comparisons 
show a general trend of little to no change beyond a given 
threshold. The threshold is kernel specific. The smallest 
kernel size has an estimation performance threshold near 
330 Hz. The 2 larger kernels have estimation performance 
threshold that are lower, 150 to 200 Hz and 75 to 100 Hz 
for the medium and large kernels, respectively. Addition-
ally, the stated values for the performance threshold are 
approximate, because the performance threshold is differ-
ent for velocity estimates along the axial dimension when 
compared with the lateral and elevational dimension, and 
there is a variation between the raw and detected results. 
The term estimation performance is used to indicate that 
results presented in Figs. 6 and 7 demonstrate the point 
where an increase in volume rate has diminishing returns 
for improved estimation of displacement. There are other 
quality factors of performance, like peak and pixel hop-
ping, which will be discussed later. However, to make the 
effects of estimation accuracy and pixel hopping more 
comparable, several pixel-hopping rates have been shown 
alongside the MAD values. Finally, the largest kernel does 
not seem to exhibit the same level of diminishing returns 
for estimates in the lateral and elevational dimensions 
when the raw echo data are used for comparison, shown 
in Fig. 6. However, the lateral and elevational dimensions 
demonstrate the same diminishing returns as a function 
of volume rate when examined in Fig. 5, which will be 
discussed next.

The final point of discussion pertaining to the results 
on the performance of velocity estimation as a function of 
volume rate examines the direct comparison of raw and 
detected data. This comparison contrasts with the previ-
ously discussed comparison where the velocity estimates 
were always compared against a constructed version of 
high volume rate data. The comparison shown in Fig. 5 
presents the direct comparison, which has many similari-
ties to Figs. 6 and 7. These figures also demonstrate a 
diminishing return, but the effect is subtler. What these 
figures primarily show is the range over which velocity 
estimates derived from raw and detected data have a sta-
ble relationship. The lateral and elevational dimensions, 
generally, show that there is little difference between us-
ing raw and detected for any volume rate. There may be 
some change in relative performance for these tracking di-
mensions, but the variation of the data would makes this 
statement tenuous. The relationship for tracking along the 
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Fig. 5. The 3 figures show direct mean-absolute-difference comparisons 
of raw and detected velocity estimates for all 3 dimensions for each vol-
ume rate used for displacement estimation. The kernel sizes are denoted 
by small, medium, and large, which correspond to mean kernel sizes of 
1.2 × .85 × .85 mm, 2.2 × 1.7× 1.7 mm, and 4.3 × 3.5 × 3.5 mm, respec-
tively. The search limits refer to the volume rate where a full 20-cm/s 
velocity can no longer be tracked in the lateral or elevational dimension. 
(The position of the error bars and the search limits are slightly offset 
for legibility.)



axial dimension is slightly more dynamic. The most obvi-
ous case is for the smallest kernel for axial tracking, which 
shows that there is a large difference between raw and 
detected methods until the volume rate reaches 333 Hz. A 
similar but less dramatic trend can be seen for axial track-
ing with medium and large kernel.

One thing that should not be inferred from the results 
is that the performance of the velocity estimates from raw 
and detected data converge somewhere near 100 Hz. This 
could be inferred from inspection of only the mean value 
in Figs. 6 and 7. Inferring that the performance of the 
raw and detected data converge would be ignoring Fig. 5, 
which may show that the velocity estimates are actually 
divergent when tracking with raw versus detected data at 
frame rates less than 100 Hz. One clear benefit of tracking 
cardiac motion above volume rates of 200 Hz is the de-
crease in peak/pixel hopping with increasing volume rate. 
This trend has been shown in Fig. 8 and demonstrates 

that pixel hopping continues to improve as a function of 
volume rate longer than the MAD velocity estimation com-
parisons. The pixel hopping shown in Fig. 8 is probably 
overstated due to the large search regions used, however, 
the high pixel hopping could also be attributed to the ex-
tra degree of freedom provided by the third dimension of 
motion tracking. Most speckle-tracking algorithms do em-
ploy some method to correct pixel hopping, but literature-
based methods for this are notoriously vague. There is at 
least one clearly defined method to reduce pixel hopping 
proposed by Lubinski et al. [51]. Even this paper does not 
clearly define what to do with pixel hops that remain or 
the resulting effect of correcting them.

The tracking quality measures examined show that 
larger kernels demonstrate less difference between track-
ing with raw and detected data and have fewer pixel hops 
than smaller kernels. The improvement of large kernels 
over small is mitigated by the loss in tracking resolution, 
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Fig. 6. Raw echo reference. This series of figures shows the mean-absolute-difference comparison of raw and detected data types compared against 
raw echo data tracked at a volume rate of 1000 Hz. Figures are shown for the motion estimates for all 3 dimensions and for the 3 kernel sizes 
(1.2 × .85 × .85 mm, 2.2 × 1.7 × 1.7 mm, and 4.3 × 3.5 × 3.5 mm). The percent of false peak detection is shown for volume rates of 200 Hz and 
above. The light gray lines show the data from all the kernels used for the analysis and show that the mean trend is comparable to trends seen from 
individual kernels. The error bars showing the standard deviations are slightly offset for viewing clarity, and for the same reason, the error bars for 
the 83- and 111-Hz volume rates have been removed.



which results in averaging over motion gradients that can 
represent important diagnostic information [56]. In fact, 
it can be the case that larger kernels will track the true 
displacement worse than smaller kernels, but the analysis 
presented here only makes comparisons between kernels of 
identical size, so it is not possible to determine at what 
point internal motion gradients become detrimental to the 
benefits of tracking with a larger kernel. The resulting 
trade-off between the spatial resolution of motion tracking 
and the accuracy of motion tracking does not present an 
obvious decision and is generally application specific.

The results shown here cannot immediately be extrapo-
lated to other methods of tracking, such as optical flow. 
However, the results are likely valid for cost functions 
similar to normalized cross-correlation such as the sum-
absolute-difference or sum-squared-difference cost func-
tions [65].

The trends in the results have implications for 3-D car-
diac strain and strain rate imaging. However, it is not 
known how the results in this paper will affect clinical 
strain and strain rate imaging because of proprietary man-
ufacturer algorithms and because strain and strain rate 
imaging are still clinically limited to 2-D. As an example, 
papers have cited either the necessity of above-average 
quality images to strain and strain rate analysis [66] or 
have removed poor quality images from the analysis (.21% 
of a general population study using the tissue Doppler 
method) [67]. In any case, the minimum required level 
of image quality and tracking performance (in terms of 
SNR, estimation precision, peak/pixel hopping, e.g.) to 
perform strain and strain analyses in 2-D, let alone 3-D, 
is not clear.

Despite the current method of examining strain and 
strain rate imaging offline, eventually the challenge with 
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Fig. 7. Detected echo reference. This series of figures shows the mean-absolute-difference comparison of raw and detected data types compared 
against detected echo data tracked at a volume rate of 1000 Hz. Figures are shown for the motion estimates for all 3 dimensions and for the 3 kernel 
sizes (1.2 × .85 × .85 mm, 2.2 × 1.7 × 1.7 mm, and 4.3 × 3.5 × 3.5 mm). The percent of false peak detection is shown for volume rates of 200 Hz 
and above. Additionally, the light gray lines show the data from all the kernels used for the analysis and show that the mean trend is comparable to 
trends seen from individual kernels. The error bars showing the standard deviations are slightly offset for viewing clarity, and for the same reason, 
the error bars for the 83- and 111-Hz volume rates have been removed.



3-D speckle tracking may be to implement fully 3-D speckle 
tracking in a clinical setting. There are several challenges 
to implementing 3-D strain and strain rate imaging in real 
time. The first challenge is acquiring 3-D data at an ad-
equate rate. Currently, strain imaging is acquired at mod-
est frame rates, but the results indicate that volume rates 
of 200  Hz or higher may benefit tracking performance. 
The requirements for obtaining a full 90° lateral sector 
scan with an amount of elevation data sufficient for 3-D 
speckle tracking (approximately 5°) does not seem trivial. 
However, for cardiac strain imaging, acquiring a full lat-
eral cross section with enough elevation data for tracking 
in all 3 dimensions is an immediately realizable imaging 
sequence on some commercial volumetric ultrasound scan-
ners. Assuming an imaging depth of 16 cm, a sound speed 
of 1540 m/s, and a receive beam sequence with 1° sam-
pling in both the lateral and elevational dimensions, a 
90° × 5° field of view could be obtained at a volume rate of 
200 Hz if at least 19 beams could be acquired in parallel. 
This hypothetical sequence is not implementable on most 
scanners, but a slight decrease in the field of view or vol-
ume rate could increase the number of scanners capable of 
running high-quality 3-D speckle tracking sequences.

In addition to the difficulties of acquiring raw volu-
metric data, the second challenge to real-time 3-D mo-
tion tracking is its computational expense. Current clini-
cal applications of cardiac strain and strain rate imaging 
are performed offline. The proposed algorithm may be 
too inefficient for real-time applications. However, if de-
tected data was determined to be accurate enough, the 
current algorithm could be simplified by employing a 
sum-squared-error or sum-absolute-difference cost func-
tion. Strategies for accelerating the proposed cost func-
tion (normalized cross-correlation) have been presented 
by Chen et al. [36].

Generally, the best method for tracking volume data 
remains an open question. This statement applies to both 
the context of the trade-offs between tracking detected 
and raw data as well as the best methods for tracking each 
type of data. The trade-off between detected and raw data 
tracking has been well established by several investigators 
[41], [42] The trade-off between the use of the 2 data types 
will in many cases come down to the available technology 
and the ability to acquire and process raw data.

There are other variables that affect 3-D cardiac speck-
le tracking that were not tested here, but that have been 
explored by Meunier in 3-D tracking simulations [41]. Two 
such variables that Meunier explored were the system’s 
point spread function and the transmit center frequen-
cy. This paper did not examine either of these variables. 
However, some of the performance variability seen in the 
results may be directly attributable to the point spread 
function’s dependence on depth for phased-array probes. 
In general, for phased-array cardiac imaging, tight point 
spread functions are difficult to come by due to small aper-
ture size. Additionally, because the interrogation frequen-
cy is inversely proportion to the size of the point spread 
function, these 2 effects are not complimentary. Therefore, 
to achieve high-performance cardiac speckle tracking, it 
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Fig. 8. Peak and pixel hopping is shown as a function of volume rate. 
The 3 kernels sizes (1.2 ×  .85 ×  .85 mm, 2.2 ×  1.7 ×  1.7 mm, and 
4.3 × 3.5 × 3.5 mm) are compared as well as the 2 data types (raw and 
detected).

Fig. 9. Cardiac speckle correlation over several cardiac cycles is shown. 
The first figure shows the peak magnitude of the correlation function 
through time of a kernel originating in systole. The second figure shows 
the same thing except with a kernel originating during the slow filling 
portion of diastole. Third and finally, the matched M-mode data are 
shown.



will be desirable to optimize this trade-off. Both of the 
discussed effects will also directly affect the rate of speckle 
decorrelation. Optimizing the imaging parameters for car-
diac tracking will not be a trivial task.

V. Conclusion

Three-dimensional speckle tracking on raw data has 
been demonstrated in both phantom and in vivo scenarios. 

Although the clinical data are preliminary, they show that 
in vivo 3-D speckle tracking with raw data is possible with 
the current, available state of ultrasound technology, and 
the spatial and temporal repeatability is consistent with 
high-quality speckle tracking.

The results demonstrate performance trends as a func-
tion of the volume rate. Displacement estimation and pixel 
hopping were shown to decrease as the sampling rate in-
creases. When comparing the trends of displacement esti-
mation and pixel hopping, displacement estimation shows 

851byram et al.: 3-D phantom and in vivo cardiac speckle tracking

Fig. 10. The figures show different projection of the full 3-D displacement through 2 cardiac cycles. The displacement data were obtained from track-
ing with raw data. The kernel size for this data was 2.2 × 1.9 × 1.9 mm, and the volume rate was 200 Hz. The data were filtered with a 5-point me-
dian filter. Baseline drift was removed by subtracting the mean displacement before cumulatively summing the data. The 2 cardiac cycles displayed 
are distinguished by shades of gray. Velocity can be inferred from the displacement between spatial locations.



clear diminishing returns as a function of volume rate well 
before pixel-hopping performance starts to plateau.

The presented results also clearly demonstrate the re-
lationship between kernel size and performance for 3-D 
speckle tracking. Although there may be an asymptotic 
relationship between kernel size and performance similar 
to the one seen with volume rate, not enough kernel sizes 
were explored to illuminate this potential trend fully.

Finally, it is clear from the results that axial estimation 
is much less sensitive to kernel size when compared with 
the lateral and elevational dimensions.

The arrival of 3-D speckle tracking on raw in vivo data 
should answer many long-standing questions within the 
field and introduce a plethora of new possibilities for fu-
ture investigation.
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