Ultrasonic Imaging

http://uix.sagepub.com/

Effect of Prior Probability Quality on Biased Time-Delay Estimation
Brett C. Byram, Gregg E. Trahey and Mark L. Palmeri
Ultrason Imaging 2012 34: 65
DOI: 10.1177/016173461203400201

The online version of this article can be found at:
http://uix.sagepub.com/content/34/2/65

Published by:
®SAGE

http://www.sagepublications.com

On behalf of:

Ultrasonic Imaging and Tissue Characterization Symposium

Additional services and information for Ultrasonic Imaging can be found at:
Email Alerts: http://uix.sagepub.com/cgi/alerts
Subscriptions: http://uix.sagepub.com/subscriptions
Reprints: http://www.sagepub.com/journalsReprints.nav
Permissions: http://www.sagepub.com/journalsPermissions.nav

Citations: http://uix.sagepub.com/content/34/2/65.refs.html

>> Version of Record - Apr 1, 2012
What is This?

Downloaded from uix.sagepub.com at DUKE UNIV on May 30, 2013


http://uix.sagepub.com/
http://uix.sagepub.com/content/34/2/65
http://www.sagepublications.com
http://uitc-symposium.org
http://uix.sagepub.com/cgi/alerts
http://uix.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://uix.sagepub.com/content/34/2/65.refs.html
http://uix.sagepub.com/content/34/2/65.full.pdf
http://online.sagepub.com/site/sphelp/vorhelp.xhtml
http://uix.sagepub.com/

ULTRASONIC IMAGING 34, 65- 80 (2012)

Effect of Prior Probability Quality on Biased
Time-Delay Estimation

BretT C. Byram,' GREGG E. TRAHEY"2 AND MARK L. PALMERI"®

Departments of !Biomedical Engineering, 2Radiology and 3Anesthesiology
Duke University
Durham, NC 27708
brett.byram@duke.edu

When properly constructed, biased estimators are known to produce lower mean-square errors than
unbiased estimators. A biased estimator for the problem of ultrasound time-delay estimation was re-
cently proposed. The proposed estimator incorporates knowledge of adjacent displacement estimates
into the final estimate of a displacement. This is accomplished by using adjacent estimates to create a
prior probability on the current estimate. Theory and simulations are used to investigate how the prior
probability impacts the final estimate. The results show that with estimation quality on the order of the
Cramer-Rao lower bound at adjacent locations, the local estimate in question should generally exceed
the Cramer-Rao lower-bound limitations on performance of an unbiased estimator. The results as a
whole provide additional confidence for the proposed estimator.

KEy WORDs: Bayes’ theorem; motion estimation; prior probability; speckle tracking; ultrasound.

I. INTRODUCTION

Traditionally ultrasound motion estimation has been limited by the Cramer-Rao lower
bound, which is the minimum variance obtainable for an unbiased estimator.”* Unbiased es-
timators may still result in biased estimates, which result from data characteristics rather
than from the algorithm used for motion estimation. Evidence for this can be seen in papers
where unbiased algorithms are used and bias is reported: two examples are Pinton et al and
Byram."’ Bias is appropriately combined with variance through the mean-square error
(MSE). Bias and variance contribute equal parts to the total estimation error but in typical
clinical ultrasound applications, the bias’ contribution to error is significantly smaller than
the variance contribution. Because the contribution of bias and variance to the total estima-
tion error is usually weighted towards the variance, a large decrease in variance for a small
increase in bias would almost always be considered a useful estimation property. This trade-
off is often possible using biased estimators, which are usually implemented using Bayes’
theorem.® While a Bayesian approach to biased estimation has not previously existed for the
ultrasound time-delay estimation problem, many ad hoc algorithms exist to restrict the
search region around the expected displacement and these solutions may be considered
nonBayesian approaches to biased estimation. A notable example is the approach by
Zahiri-Azar and Salcudean.” Their approach uses displacements estimated at adjacent loca-
tions in a medium to aggressively restrict the search window at the current estimate. This has
advantages of decreasing computational load and decreasing peak hopping artifacts, which,
in turn, results in decreased estimation variance without significantly changing estimation
bias. Similar improvements in estimation can be realized using regularization methods first
popularized in ultrasound by Pellot-Barakat et al.® A more general approach to the problem
of biased estimation was recently presented using Bayes’ theorem.” One of the challenges
with Bayesian approaches is understanding how the prior information impacts the final esti-
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66 BYRAM ET AL

mate. This is particularly true in the case when prior probabilities are an attempt at estimat-
ing the prior information rather than utilizing prior information known from other factors,
such as experimental design.

This paper explores the effect that the quality of prior information has on displacement es-
timation; here, the notion of prior information quality will refer to the difference between the
true displacement and the mean of the prior distribution as well as the width of the prior dis-
tribution (e.g. standard deviation, bandwidth, etc.). In order to provide intuition to the notion
of prior quality, several examples are provided of various levels of prior probability quality.
The highest quality prior would be a delta function located at the true displacement (although
this is generally not an interesting case assuming the data has a region of support encompass-
ing the prior delta function because the data become irrelevant). This high-quality prior can
be contrasted against a prior with a small standard deviation but a grossly-incorrect mean
value, which represents a worst case prior. An example midquality prior would have a mean
that is close to or exactly the true displacement but with a sufficiently broad standard devia-
tion for the final estimate to be dominated by the data. The quality of the prior distribution
can be assessed quantitatively using the mean-square error of the displacement estimate rela-
tive to a baseline measure of quality. A possible baseline quality measure for time-delay es-
timation is the Cramer-Rao lower bound (CRLB). For this scenario, quality could be
expressed quantitatively as

Qualilymo) = MSE{Q - CRLBT.O (1)

where p(t,) represents the prior, 7, is the estimated displacement and MSE is the mean-
square error for the estimate of t,. Based on this representation of quality, a prior is better as
the quality becomes more negative. In reality, Eq. (1) is mostly useful to connect the quality
of'the prior to the unbiased performance restricted by the Cramer-Rao lower bound. The pur-
pose here is to determine how well a true displacement has to be known in order to provide a
better displacement estimate than that obtained using a noninformative prior. The noninfor-
mative prior for ultrasound time-delay estimation is a uniform probability distribution
equivalent in size and position to the search region. The noninformative prior results in an
algorithmically-unbiased estimate limited by the CRLB. In order to assist in determining the
necessary quality to surpass performance dictated by the CRLB, analytic expressions that
approximate estimator performance over a wide range of prior distributions will be derived.
The analytic expressions themselves may prove useful in order to decide whether a displace-
ment estimate is likely to have a quality that exceeds the CRLB.

Il. METHODS

Theory

There are many ways to estimate parameters from probability distributions.” The deriva-
tion to follow will focus on the minimum mean-square estimator (MMSE) of parameters and
will derive the associated estimator bias, variance and mean-square error. The choice to fo-
cus on a particular method of estimating a parameter from a posterior distribution should not
be considered particularly restrictive because several useful assumptions that will eventu-
ally be made in the derivation result in different parameter estimators having nearly identical
behavior.
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The minimum mean-square error estimator for the time-delay T, is
fo =E[r, |x]:.|‘rop(‘co|x)dto, 2)

where 1,is the estimated time-delay and p(t,|x) is the posterior distribution expressing
knowledge of the displacement, which can be found using Bayes’ theorem. Bayes’ theorem
is

_ plxlt, p,) 3)
P lx)= [plxlt, p,)dr,”

which shows that in order to obtain the necessary posterior distribution, a prior probability
for t,and a likelihood function are required. The likelihood function for the time-delay esti-
mation problem is a canonical result that can be found in many texts."""” The likelihood
function for this problem is

1 1 oy 2 4
p(x|t,) = - expl-——— Y 5,(nA)'] @
(4nc )? (40 ,.) =0
2040

AZ —25,(nA)s,(nA+1,)+s,(nA+1,)’]

X €X
l 462 ) o
noise "*A

where s, and s, are the two signals with relative displacement,c’ ., is the noise power (the

noise power has been doubled based on the argument by Walker,'* A is the sampling period,
and M is the number of samples in a kernel. Additionally, this is the likelihood function de-
rived from the assumption of additive Gaussian-distributed band-limited noise.

For the purpose of deriving an analytic expression for the displacement estimates, the
prior distribution will be assumed to be normally distributed,

%

1 1 ,
T = exXp|— T,—T
p,) \/R pl 2012,( 0 =T,)7]

where t, describes the expected location of t, before we consider the data and ci is a mea-
sure of the confidence in the knowledge of the displacement. The two parameters of the nor-
mal distribution, t, and cszp , are at the heart of this paper and will be the parameters used to
modulate the displacement estimation quality as described in the introduction. Normal dis-
tributions are often over-applied based on faulty assumptions but for this scenario, a normal
distribution is appropriate because it represents the least informative distribution when only
the mean and standard deviation are known." '® The normal prior assumption nicely re-
stricts the prior parameter space to two dimensions while assuming the least amount of addi-
tional information.

Inserting the likelihood function (Eq. (4)) and the prior distribution (Eq. (5)) into Eq. (3),
canceling terms in the numerator and denominator lacking dependency on t,, shifting the
reference point of the correlation shift by M/2, and assuming A is small enough to replace the
summation with an integral (mirroring the derivation by Kay'’), the posterior distribution
can be expressed as
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1 1 : (©)
exp[z 2 Ajjoiﬁsl(r)sz(’t +To)]exp[_2072(ro_rp) ]
p(x|7,) = E— -
0 +— 2
Lol [ @ +lexpl= <@, =, ) 1oty
where 7, = MA."”
A noise-free signal model is then asserted since noise is already modeled in Eq. (6),
; (7)

s(t) = Ae 2ol sin(w?).

In addition to the signal model, the assumption is made that s (¢) and s,(¢) are identical ex-
cept they are time-shifted by 7,,. (It should be noted that this is a strong assumption that as-
sumes perfect correlation between the two signals minus the thermal noise. While this
scenario is rarely encountered in vivo or in phantoms, there are several similar classes of al-
gorithms that aim to correct signal decorrelation and restore the ideal behavior obtained
when correlating signals with only bulk motion shifts.'” "¥) Based on the signal model, the

correlation between the two signals is

R)=["5@)s, @ +1,)dt =4 Te “ cos(®, (T, —T,))-

B _o=0)’ %)
sig 4531'g g 1 2
, € cos(a, (t, —T,))]exp[— 7o T, -7,)1]

P

10-70)% ’
. ) |o2m - fozi,) - 1 ,
[, expl4 5 € cos(a, (t, _To))]exp[_P(To -1,) ldt,

P

exp[A4’

p(ro |x) =

So the posterior distribution of t, with the introduced signal model is

Next, the unscaled posterior distribution is considered independent of the full posterior
distribution expression shown above (Eq. (9)); the unscaled likelihood function is expressed
more conveniently using a Taylor’s series representation of the outer exponential, resulting
in

Lol n T (10)
si O Sig m ~
(804 gAz)ze COos ((DU(TO_‘C()))

noise

px|T,)p@,) =3

- _ 2
2 o exp[ 202(% )]

P

m is the only variable introduced and is the index for the terms in the Taylor series. This is
a convenient method for expressing the unscaled posterior because it allows the two Gaussi-
an distributions to be consolidated to give
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= 1 -@,+7,)" Ao m » (11)
P(x|To)P(To)—mz:0%eXp[ mo +2GS, ](80' AZ)
2( g) noise
m
2
me T, +26. 1,
S Mt 2 3
" mo +20% N
xexp| — cos” (o, (t, —T,))-
266,
mcsp+20‘sig

This expression can be inserted into the following equations in order to calculate the mo-
ments that quantify the estimator. The scaling of the posterior is

K =[ p(x|t,)pk,)dr,. (12)
The bias of the estimate 7, is

_LropGxlt)pe)de, - (13)
K o

bias,, =E[t, -T,]

And the variance of the estimation error is

var, =E[(T, ~T,)"]-bias,

_Laiplt)pe)dy, ([rplc)ped, ) (14
B K K '

Ifthe order of the integral in Egs. (12), (13) and (14) and the sum encountered in Eq. (11) are
exchanged, the resulting integral form

sig” p

[ mo T +2621 )2 (15)
10——

mo , + 2c$“g

[“r; exp|— cos” (w,(t, —T,))dr,

5 26,5,

me’+2c

has a closed form solution (only »=0, 1, and 2 will be required). The necessary substitutions
and identities used for solving the closed form solution to Eq. (15) can be found in the appen-
dix of the work by Byram."

The analytic forms for bias, and var, are long, but there are several common terms. The
variable representing the variance of the posterlor Gaussian weighting for each m of the sum-
mation is

2.2

o 2%6 (16)

m

G
mc +20M
g
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The variance of the posterior is a combination of the variance of the prior and bandwidth of
the original signal expressed as a variance. The interpretation is complicated by the m index
from the series expansion but otherwise, the equation shows that if the prior’s variance is
large relative to the signal’s bandwidth, then the variance of the posterior is dominated by the
signal information and vice versa.

Similar to the combined variance, the variable representing the combined mean of the
Gaussian from combining the likelihood function and the prior is

. mo T, +20. 1, (17)

n, = 2 2
mo , +26

The form of this equation is similar to the form of the combined variance in Eq. (16).
However, the new mean is exactly a weighted average of prior and signal correlation func-
tions means, where the weights are determined by the variances of the prior and the signals’
correlation function. Practically, the way the variances and means of the signal and prior in-
teract is the primary determinant of the final quality of a displacement estimate. Finally, it
was useful to lump several parameters together into a common scaling term that was useful
for all the moments of the posterior distribution. The scaling factor is

(18)

noise

m

-, +7,)’ A'sln )
C, =exp ( L 0)2 ——— | J20"n
2{mcp +2c”,g] 80, A

—(t,+1,)’ SNR* \? >
=exp 26" m
mo’ +2c’ 2
2 P sig
m

.The scaling factor includes normalization terms from the Gaussian distribution, SNR
scaling and residuals from completing the square to form the new Gaussian distribution. Us-
ing the expressions just defined K, E[%, —%,]and E[(%, —,)" ] can be expressed as

» " 19
15 ’
m=0 ! 2 2

2m=3+(-1)"*!
cC T4 N
3 (; os[(m—2k)0, (', —ro)]exp[

+
2" m! k=0 2

—G'i,wj(m—Zk)z}
1« C, (1+(-1)" c, 20
BT )=~ z—[—}[ )u'ﬁ—”’ 3 ( Keoslo, (m—2k)(n', T, -

mm | 2m " 2" m

c"” (m-2k)w,)’ }

sinfo, (m - 2k) (W', <)l wo(m—zknexp{— :
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and
A2 1 =C 1 1
Em]=;§4{'jm)1]@ )
2m-3+(~1)"*1
2 (heosloyn-200(8, )] 676 (n-2000,) + 47

ci<m—2Mmoﬂ
2

—sin[o, (m - 2k)(pn',—T,)]Cu", 62 o, (m - 2k) )} exp{—

These expressions are cumbersome, and they represent the summation of the closed form
solutions obtained from Eq. (15). These equations are unfortunately not very intuitive but
the primary characteristic is that they are a nested series of sinusoids resulting from our very
earliest assumptions about the signals’ characteristics and their resulting correlation func-
tions. To a lesser extent, these final equations are determined by the assumption that the
prior distribution is a Gaussian.

Cramer-Rao lower-bound comparison

The analytic expression just derived is for a bulk motion case with perfect correlation, ex-
cept for decorrelation induced by thermal noise. The Cramer-Rao lower bound that com-
pares most appropriately to this signal scenario was derived for ultrasound by Walker and
Trahey.” Their derivation of the Cramer-Rao lower bound is

A~ 2N,
clT,-T,)2 .

A (0);6 P (1 i jJ
“ 20

sig

(22)

where the variables correspond to the variables used in the derivation thus far and N, is the
noise power.

Simulations

The model of MMSE performance is compared against simulations. Simulations are per-
formed using a 1D scattering geometry and convolution. In order to simulate continuous
scatterer positions, the convolution was implemented with a complex pulse with phase rota-
tion to accommodate the arbitrary positions. The scatterer amplitudes were normally distrib-
uted, and scatterer density within the -6 dB bandwidth of the pulse was always above 15
scatterers per resolution cell to ensure appropriate 1* and 2™ order speckle statistics.” In the
simulations and resulting Bayesian estimation, the noise power was assumed to be known.
(This contrasts with the practical method devised for obtaining an appropriate likelihood
function for Bayesian estimation proposed by Byram.") The noise itself was modeled as
band-limited Gaussian noise, where the band-limit was defined by the simulated pulse. For
each combination of investigated prior variance and bias relative to the true displacement,
1000 pairs of rf A-lines were simulated. The sampling frequency used was 10 GHz unless
otherwise noted, which ensures a good error distribution for the range of prior probabilities
explored in the results without using subsample estimation. Subsample estimation would in-
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Table I. Data simulation and displacement-tracking parameters.

Parameter Value
Center frequency 5 MHz
Bandwidth 50%
A 1
c 1540 m/s
Sampling frequency 10 GHz
Kernel length 275\
SNR 20 dB
Mmax 170
Search offset +\/4

troduce an additional source of bias that would complicate the results. All the parameters
used in the model and the simulations (unless stated otherwise) are summarized in table 1.

Technically, the model calculates the mean-squared error of the estimator while the simu-
lation data are reported as the mean of the squared residuals,

MSR = —Z(r T, )’ (23)

n

where T, is the estimated value, 7, is the true value known from the simulations and N is
number of simulated displacements. Eq. (23) is related to the commonly-used residual sum
of squares.

lll. RESULTS

Some specifics of model implementation are shown first. The results show that the model
cannot be implemented using double-precision computer arithmetic for SNR values larger
than roughly 23 dB. This stems from the summation seen in Egs. (19), (20) and (21). In
these equations, as the SNR increases, the peak value of the summation occurs at higher val-
ues of m. This is shown in figure 1a, which shows the individual terms (indexed by m) before
they are used to calculate the scaling value (K) as a function of m for several SNRs. This is
important because factorials for integers greater than 170 cannot be expressed as traditional
double-precision floating point numbers. The peak value of the summed terms occurs at
nearly the identical location for Egs. (19), (20) and (21). This occurs because the scaling is
predominantly interplay between C_shown in Eq. (18) and m/ This is shown graphically in
figure 2. (In the future, this behavior may be exploitable to make approximations that are
more easily implemented using double-precision computer arithmetic.)

The model was derived based on a simple Gaussian-weighted pulse and unnormalized
cross-correlation. It is not obvious how this translates to kernel size. It is shown empirically
in figure 3 that the model roughly corresponds to a kernel size of 2, which is what was used
for the rest of the simulations.
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FIG 1 Plots demonstrating limitation of implementing the analytic model for predicting performance of biased
time-delay estimation. Figure on the left shows the normalized components of the scaling term K as function of m
before they are summed. K is the 0" order moment shown in Eq. (19) and m indexes the terms in the Taylor series.
The figure shows that the curve as a function of m broadens and the peak shifts to higher m as the SNR increases. The
plot on the right shows the peak value used to scale the plots in the right figure. The peak values become extremely
large as the center of the function moves towards higher values of m. The figures show why the model breaks down
for SNRs larger than 22 dB when the model is implemented using double-precision arithmetic.
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FIG.2 Plots showing the presummed values of the scaling term, K and the numerators of the first two noncentral
moments before they are scaled by K. This figure demonstrates relative orders of magnitude and also shows that the
shape and position of the three plots are largely the same. The example shown is for an SNR of 20 dB, a bias of 1% of
the period and a prior bandwidth that is 1% of the signal bandwidth.

Modeled and simulated results are shown in figure 4. The results in this figure are plotted
as a function of the prior mean and variance. The mean and variance are both displayed rela-
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FIG. 3 In effect, the model is derived without any dependency on kernel length, which is a significant determi-
nant in performance. In order to determine an appropriate kernel length for the simulations, a number of kernel
lengths were compared to the performance of the model for a case with a broad prior that does not influence the final
estimate. (The bandwidth of the prior was 10 times wider than the bandwidth of the pulse.) The figure shows where
unnormalized cross-correlation-based methods are similar to the performance indicated by the model. As a point of
reference, the performance of normalized cross-correlation is shown and the MMSE and the maximum likelihood
estimate (MLE) are also shown. For the set of parameters chosen, the MMSE and the MLE yield indistinguishable
results.
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FIG. 4 Comparison of modeled and simulated MSE. The modeled MSE is shown on the left and the MSE result-
ing from the simulations is shown on the right. The MSE results are plotted as a function of the prior probability’s
bandwidth relative to the bandwidth of the signal and the bias is plotted relative to the center wavelength. The results
are shown for the full range of the evaluated parameter space.

tive to the characteristics of the imaging pulse. To this end, the prior mean is expressed as a
bias relative to the true displacement as a percentage of the period of the center frequency
and the prior variance is plotted as a fraction of the bandwidth of the ultrasound pulse. The
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FIG. 5 Comparison of modeled and simulated MSE as a function of prior bandwidth relative to signal band-
width. Plots are shown for six different biases between 0.000001 and 0.1 in units of T,. The plots more adequately
highlight the differences between the model and simulated results. The differences between the two sets of results
become more severe as the bias gets smaller.

results shown in the figure show that the model and the simulations are generally in agree-
ment but are hard to compare directly when displayed as side-by-side surfaces. In order to
facilitate more exact comparisons, the model and simulations are plotted as a single function
of the prior’s bandwidth and also the prior’s bias. These plots also include the Cramer-Rao
lower bound, which facilitates comparison in order to determine the domain where the new
estimator is better than unbiased estimators.

The relative performance between the model and the simulations is more easily seen in
figures 5 and 6. These two figures show that there is an approximate agreement between the
model and simulations and this agreement is best when the bandwidth of the prior is only one
or two orders of magnitude smaller than the bandwidth of the signal. While it is unfortunate
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FIG. 6 Comparison of modeled and simulated MSE as a function of prior bias relative to signal wavelength.
Plots are shown for six different prior bandwidths relative to signal bandwidth. The results show that for a relevant
range of the parameter space investigated, the model closely predicts the simulation performance.

that the model does not match the simulations better in the ultrawide bandwidth regime,
these regions represent a place where there is so much confidence in the prior information
that the data has almost no influence on the final estimate. This is not expected to be a gener-
ally-useful domain of operation for Bayesian-style estimators in ultrasound TDE.

In order to show the effect of sampling frequency on the estimates from simulated data,
several plots are shown for various sampling frequencies. These plots are shown in figure 7.
The plots generally show that the sampling frequency does not affect the slope of the simula-
tion in the transition region between bias-limited behavior and bandwidth- (variance) lim-
ited behavior. Additionally, the sampling frequency does not affect the final settling level
for the bias limit as a function of prior bandwidth but it does affect the maximum prior band-
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FIG. 7 Comparison of modeled and simulated MSE as a function of the prior bandwidth relative to the signal
bandwidth for different sampling frequencies and a bias of 0.001T,. Plots are shown for four different sampling fre-
quencies.

width where the estimates settle into the bias limit. This behavior suggests that the expected
width of the prior information could be an important consideration when determining an ap-
propriate sampling frequency for biased-motion estimation. These results will probably
change if a subsample estimator were introduced.

IV. DISCUSSION

The utility of the results just presented is two-fold. First, a model was developed that
could be used predictively to assess whether an estimate is bounded by the CRLB or sur-
passes the CRLB. Second, the necessary prior information to make estimates that surpass
the CRLB and have improved quality was assessed.

The developed model does not agree exactly with simulation but it generally shows good
agreement within the most relevant region of the tested parameter space. The model and the
simulations diverge as the prior gets narrower by orders of magnitude relative to the signal’s
bandwidth. The primary difference between simulation and model is that the simulations
show faster convergence towards the ‘bias’ noise floor as a function of prior bandwidth than
the model results. There are two sources that seem to most credibly account for the differ-
ence between the simulation and modeled results. First, the model derivation makes several
assumptions, specifically the introduction of a series expansion. The series expansion could
be a source of error when the model is actually implemented because the bulk of the expan-
sion terms that contribute to the final bias and variance are not near the beginning of the se-
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ries, as seen in figure 1a. This may expose the model to numerical errors since the numerator
and denominator at large m’s both end up being extremely large values, which combine to
form very small numbers. Additionally, in general, the model and simulations match well
but the likelihood function in Eq. (4) is for the case of white Gaussian noise. The simulations
were implemented with the more realistic case of band-limited Gaussian noise. The likeli-
hood function for white Gaussian noise is known to produce conservative results when used
on signals with correlated noise,” which is consistent with the presented results. The lack of
better agreement between the simulated and modeled data is unfortunate but it is almost a
moot point since the disagreement predominantly occurs in regions where the prior is a thou-
sand to a million times narrower than the signal’s pulse width. In this region, the data effec-
tively become meaningless relative to the dominance of the prior information. Practically,
this region of disagreement matters little for predicting whether estimates are CRLB limited
or can be expected to be better than the CRLB. This should work since the results indicate
that prior bandwidths that allow for improved estimator performance are independent of the
bias. So, for a given set of pulse characteristics, it should be possible to predict the minimum
prior bandwidth to produce estimates that exceed the CRLB.

The ability to predict whether the prior’s bandwidth is sufficiently broad relative to the
signal bandwidth to produce displacement estimates surpassing the CRLB is only useful if
the bias is also sufficiently small. The qualification for ‘sufficiently small’ bias can be ob-
served from the results. The results show that biases that are less than about 0.01T, will re-
sult in displacement estimates that are better than the CRLB. In order to put this in
perspective, the CRLB as a standard deviation is also about 0.01T,. This is significant be-
cause it indicates that there is enough information contained within a minimum variance un-
biased estimate to appropriately influence a prior distribution to allow for an estimate that
surpasses the Cramer-Rao lower bound about 68% of the time (assuming normal statistics).
Nearly all of the estimates (99.7%) obtained using an unbiased minimum variance estimator
are within 0.03T,. Based on the results ,even the worst of the minimum variance estimates, if
used as amean for a prior distribution, should not be expected to have performance that is no-
ticeably different than the CRLB.

Additionally, in order to be clear, a lower-bound on estimator performance for a Bayesian
style mean posterior estimator has not been derived. These types of lower bounds do exist in
theory but they can only be implemented for very specific practical applications,23 which do
not apply to the specific case presented here. However, an aggressive lower-bound for bi-
ased ultrasonic time-delay estimation using a different signal model or prior should not be
ruled out.

Finally, it is appropriate to reiterate that restrictive assumptions were made in the course of
this derivation. The derivations final results are mostly limited by the assumption of bulk
motion but they are also limited by the assumption that the prior is a Gaussian distribution.
The goal of the assumptions was to maintain analytic tractability so that the effect of prior in-
formation on the quality of displacement estimates could be assessed. One likely byproduct
of the assumptions is that for motion estimated in the presence of significant scatterer
decorrelation (e.g., blood flow or quasistatic elastography), the analytic derivations pre-
sented here are optimistic. Addressing more complicated displacement scenarios is an on-
going task.

V. CONCLUSIONS

A predictive model has been derived for Bayesian time-delay estimation. It was shown
that biases with sufficient additional information to improve the quality over the CRLB are
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obtainable from CRLB limited estimates. These results provide further support to previ-
ously-presented results for the usefulness and feasibility of biased time-delay estimators for
clinical ultrasound.
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