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Ef fect of Prior Prob a bil ity Qual ity on Bi ased
Time-De lay Es ti ma tion

BRETT C. BYRAM,1 GREGG E. TRAHEY1, 2 AND MARK L. PALMERI1, 3

Departments of  1Bio med i cal En gi neer ing, 2Ra di ol ogy and 3An es the si ol ogy
Duke Uni ver sity

Dur ham, NC 27708
brett.byram@duke.edu

When prop erly con structed, bi ased es ti ma tors are known to pro duce lower mean-square er rors than
un bi ased es ti ma tors.  A bi ased es ti ma tor for the prob lem of ul tra sound time-de lay es ti ma tion was re -
cently pro posed.  The pro posed es ti ma tor in cor po rates knowl edge of ad ja cent dis place ment es ti mates
into the fi nal es ti mate of a dis place ment.  This is ac com plished by us ing ad ja cent es ti mates to cre ate a
prior prob a bil ity on the cur rent es ti mate.  The ory and sim u la tions are used to in ves ti gate how the prior
prob a bil ity im pacts the fi nal es ti mate.  The re sults show that with es ti ma tion qual ity on the or der of the
Cramer-Rao lower bound at ad ja cent lo ca tions, the lo cal es ti mate in ques tion should gen er ally ex ceed
the Cramer-Rao lower-bound lim i ta tions on per for mance of an un bi ased es ti ma tor.  The re sults as a
whole pro vide ad di tional con fi dence for the pro posed es ti ma tor. 

KEY WORDS:  Bayes’ the o rem; mo tion es ti ma tion; prior prob a bil ity; speckle track ing; ul tra sound.

I. IN TRO DUC TION

Tra di tion ally ul tra sound mo tion es ti ma tion has been lim ited by the Cramer-Rao lower
bound, which is the min i mum vari ance ob tain able for an un bi ased es ti ma tor.1-3  Un bi ased es -
ti ma tors may still re sult in bi ased es ti mates, which re sult from data char ac ter is tics rather
than from the al go rithm used for mo tion es ti ma tion.  Ev i dence for this can be seen in pa pers
where un bi ased al go rithms are used and bias is re ported: two ex am ples are Pinton et al and
Byram.4, 5  Bias is ap pro pri ately com bined with vari ance through the mean-square er ror
(MSE).  Bias and vari ance con trib ute equal parts to the to tal es ti ma tion er ror but in typ i cal
clin i cal ul tra sound ap pli ca tions, the bias’ con tri bu tion to er ror is sig nif i cantly smaller than
the vari ance con tri bu tion.  Be cause the con tri bu tion of bias and vari ance to the to tal es ti ma -
tion er ror is usu ally weighted to wards the vari ance, a large de crease in vari ance for a small
in crease in bias would al most al ways be con sid ered a use ful es ti ma tion prop erty.  This trade -
off is of ten pos si ble us ing bi ased es ti ma tors, which are usu ally im ple mented us ing Bayes’
the o rem.6  While a Bayesian ap proach to bi ased es ti ma tion has not pre vi ously ex isted for the
ul tra sound time-de lay es ti ma tion prob lem, many ad hoc al go rithms ex ist to re strict the
search re gion around the ex pected dis place ment and these so lu tions may be con sid ered
nonBayesian ap proaches to bi ased es ti ma tion.  A no ta ble ex am ple is the ap proach by
Zahiri-Azar and Salcudean.7  Their ap proach uses dis place ments es ti mated at ad ja cent lo ca -
tions in a me dium to ag gres sively re strict the search win dow at the cur rent es ti mate.  This has 
ad van tages of de creas ing com pu ta tional load and de creas ing peak hop ping ar ti facts, which,
in turn, re sults in de creased es ti ma tion vari ance with out sig nif i cantly chang ing es ti ma tion
bias.  Sim i lar im prove ments in es ti ma tion can be re al ized us ing reg u lar iza tion meth ods first
pop u lar ized in ul tra sound by Pellot-Barakat et al.8  A more gen eral ap proach to the prob lem
of bi ased es ti ma tion was re cently pre sented us ing Bayes’ the o rem.5  One of the chal lenges
with Bayesian ap proaches is un der stand ing how the prior in for ma tion im pacts the fi nal es ti -
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mate.  This is par tic u larly true in the case when prior prob a bil i ties are an at tempt at es ti mat -
ing the prior in for ma tion rather than uti liz ing prior in for ma tion known from other fac tors,
such as ex per i men tal de sign.

This pa per ex plores the ef fect that the qual ity of prior in for ma tion has on dis place ment es -
ti ma tion; here, the no tion of prior in for ma tion qual ity will re fer to the dif fer ence be tween the
true dis place ment and the mean of the prior dis tri bu tion as well as the width of the prior dis -
tri bu tion (e.g. stan dard de vi a tion, band width, etc.).  In or der to pro vide in tu ition to the no tion 
of prior qual ity, sev eral ex am ples are pro vided of var i ous lev els of prior prob a bil ity qual ity.
The high est qual ity prior would be a delta func tion lo cated at the true dis place ment (al though 
this is gen er ally not an in ter est ing case as sum ing the data has a re gion of sup port en com pass -
ing the prior delta func tion be cause the data be come ir rel e vant). This high-qual ity prior can
be con trasted against a prior with a small stan dard de vi a tion but a grossly-in cor rect mean
value, which rep re sents a worst case prior. An ex am ple midqual ity prior would have a mean
that is close to or ex actly the true dis place ment but with a suf fi ciently broad stan dard de vi a -
tion for the fi nal es ti mate to be dom i nated by the data.  The qual ity of the prior dis tri bu tion
can be as sessed quan ti ta tively us ing the mean-square er ror of the dis place ment es ti mate rel a -
tive to a base line mea sure of qual ity.  A pos si ble base line qual ity mea sure for time-de lay es -
ti ma tion is the Cramer-Rao lower bound (CRLB).  For this sce nario, qual ity could be
ex pressed quan ti ta tively as

 
 where p(t0) rep re sents the prior, $t0  is the es ti mated dis place ment and MSE is the mean-

 square er ror for the es ti mate of t0. Based on this rep re sen ta tion of qual ity, a prior is better as
the qual ity be comes more neg a tive. In re al ity, Eq. (1) is mostly use ful to con nect the qual ity
of the prior to the un bi ased per for mance re stricted by the Cramer-Rao lower bound. The pur -
pose here is to de ter mine how well a true dis place ment has to be known in or der to pro vide a
better dis place ment es ti mate than that ob tained us ing a noninformative prior.  The nonin for -
ma tive prior for ul tra sound time-de lay es ti ma tion is a uni form prob a bil ity dis tri bu tion
equiv a lent in size and po si tion to the search re gion.  The noninformative prior re sults in an
al gor ith mi cally-un bi ased es ti mate lim ited by the CRLB.  In or der to as sist in de ter min ing the 
nec es sary qual ity to sur pass per for mance dic tated by the CRLB, an a lytic ex pres sions that
ap prox i mate es ti ma tor per for mance over a wide range of prior dis tri bu tions will be de rived.
The an a lytic ex pres sions them selves may prove use ful in or der to de cide whether a dis place -
ment es ti mate is likely to have a qual ity that ex ceeds the CRLB.

II. METH ODS

The ory

There are many ways to es ti mate pa ram e ters from prob a bil ity dis tri bu tions.9  The der i va -
tion to fol low will fo cus on the min i mum mean-square es ti ma tor (MMSE) of pa ram e ters and 
will de rive the as so ci ated es ti ma tor bias, vari ance and mean-square er ror.  The choice to fo -
cus on a par tic u lar method of es ti mat ing a pa ram e ter from a pos te rior dis tri bu tion should not
be con sid ered par tic u larly re stric tive be cause sev eral use ful as sump tions that will even tu -
ally be made in the der i va tion re sult in dif fer ent pa ram e ter es ti ma tors hav ing nearly iden ti cal 
behavior.
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The min i mum mean-square er ror es ti ma tor for the time-de lay t0 is

where $t0 is the es ti mated time-de lay and p(t0|x) is the pos te rior dis tri bu tion ex press ing
knowl edge of the dis place ment, which can be found us ing Bayes’ the o rem.  Bayes’ the o rem
is

which shows that in or der to ob tain the nec es sary pos te rior dis tri bu tion, a prior prob a bil ity
for t0 and a like li hood func tion are re quired.  The like li hood func tion for the time-de lay es ti -
ma tion prob lem is a ca non i cal re sult that can be found in many texts.10-13  The like li hood
func tion for this prob lem is

where s1 and s2 are the two sig nals with rel a tive dis place ment,snoise
2  is the noise power (the

noise power has been dou bled based on the ar gu ment by Walker,14 D is the sam pling pe riod,
and M is the num ber of sam ples in a ker nel.  Ad di tion ally, this is the like li hood func tion de -
rived from the as sump tion of ad di tive Gaussi an-dis trib uted band-lim ited noise.

For the pur pose of de riv ing an an a lytic ex pres sion for the dis place ment es ti mates, the
prior dis tri bu tion will be as sumed to be nor mally dis trib uted, 

where tp de scribes the ex pected lo ca tion of t0 be fore we con sider the data and s p
2  is a mea -

sure of the con fi dence in the knowl edge of the dis place ment.  The two pa ram e ters of the nor -
mal dis tri bu tion, t0 and s p

2 , are at the heart of this pa per and will be the pa ram e ters used to
mod u late the dis place ment es ti ma tion qual ity as de scribed in the in tro duc tion.  Nor mal dis -
tri bu tions are of ten over-ap plied based on faulty as sump tions but for this sce nario, a nor mal
dis tri bu tion is ap pro pri ate be cause it rep re sents the least in for ma tive dis tri bu tion when only
the mean and stan dard de vi a tion are known.15, 16  The nor mal prior as sump tion nicely re -
stricts the prior pa ram e ter space to two di men sions while as sum ing the least amount of ad di -
tional in for ma tion.  

In sert ing the like li hood func tion (Eq. (4)) and the prior dis tri bu tion (Eq. (5)) into Eq. (3),
can cel ing terms in the nu mer a tor and de nom i na tor lack ing de pend ency on t0, shift ing the
ref er ence point of the cor re la tion shift by M/2, and as sum ing D is small enough to re place the
sum ma tion with an in te gral (mir ror ing the der i va tion by Kay10), the pos te rior dis tri bu tion
can be ex pressed as
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where Ts = MD.10

A noise-free sig nal model is then as serted since noise is al ready mod eled in Eq. (6), 

In ad di tion to the sig nal model, the as sump tion is made that s1(t) and s2(t) are iden ti cal ex -
cept they are time-shifted by ~t0 .  (It should be noted that this is a strong as sump tion that as -
sumes per fect cor re la tion be tween the two sig nals mi nus the ther mal noise.  While this
sce nario is rarely en coun tered in vivo or in phan toms, there are sev eral sim i lar classes of al -
go rithms that aim to cor rect sig nal decorrelation and re store the ideal be hav ior ob tained
when cor re lat ing sig nals with only bulk mo tion shifts.17, 18)  Based on the sig nal model, the
cor re la tion be tween the two sig nals is

So the pos te rior dis tri bu tion of t0 with the in tro duced sig nal model is 
 Next, the unscaled pos te rior dis tri bu tion is con sid ered in de pend ent of the full pos te rior

dis tri bu tion ex pres sion shown above (Eq. (9));  the unscaled like li hood func tion is ex pressed 
more con ve niently us ing a Tay lor’s se ries rep re sen ta tion of the outer ex po nen tial, re sult ing
in

m is the only vari able in tro duced and is the in dex for the terms in the Tay lor se ries.  This is
a con ve nient method for ex press ing the unscaled pos te rior be cause it al lows the two Gaussi -
an dis tri bu tions to be con sol i dated to give
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This ex pres sion can be in serted into the fol low ing equa tions in or der to cal cu late the mo -
ments that quan tify the es ti ma tor.  The scal ing of the pos te rior is

The bias of the es ti mate $t0 is

And the vari ance of the es ti ma tion er ror is

If the or der of the in te gral in Eqs. (12), (13) and (14) and the sum en coun tered in Eq. (11) are 
ex changed, the re sult ing in te gral form 

has a closed form so lu tion (only r = 0, 1, and 2 will be re quired).  The nec es sary sub sti tu tions
and iden ti ties used for solv ing the closed form so lu tion to Eq. (15) can be found in the ap pen -
dix of the work by Byram.19 

The an a lytic forms for bias $t 0
 and var $t 0

 are long, but there are sev eral com mon terms.  The
vari able rep re sent ing the vari ance of the pos te rior Gaussi an weight ing for each m of the sum -
ma tion is

EF FECT OF PRIOR QUAL ITY ON TIME-DE LAY ES TI MA TION                                                                                      69

.~)()|(
]~ˆ[ 0

0000

000ˆ
t

tttt
tt

t
-

ò
=-E=

¥

¥-

K

dpxp
bias

(13)

.
)()|()()|(

])~ˆ[(var

2

0000000

2

02

0
~

2

000ˆ ÷
÷
ø

ö
ç
ç
è

æ ò
-

ò
=--E=

¥

¥-

¥

¥-

K

dpxp

K

dpxp
bias

tttttttt
tt

tt

(14)

)).~((cos

2

2
2

2

2~

exp

)
8

(]

)
2

(2

)~(
exp[

!

1
)()|(

000

22

22

2

22

2

0

2

0

2

24

24

0
22

2

0

00

ttw

ss

ss

ss

tsts
t

s

ps

ss

tt
tt

-

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

+

÷
÷

ø

ö

ç
ç

è

æ

+

+
-

-´

D
å

+

+-
=

¥

=

m

sigp

sigp

sigp

psigp

m

noise

sig

m
sigp

p

m

m

m

A

m

mm
pxp

(11)

0000

22

22

2

22

2

0

2

0

0
))~((cos

2

2
2

2

2~

exp tttw

ss

ss

ss

tsts
t

t d

m

m

m

m

sigp

sigp

sigp

psigp

r -ò

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

+

÷
÷

ø

ö

ç
ç

è

æ

+

+
-

-
¥

¥-

(15)

.)()|(
000

ttt dpxpK ò=
¥

¥-
(12)

.
2

2
'

22

22

2

sigp

sigp

m
m ss

ss
s

+
=

(16)

 at DUKE UNIV on May 30, 2013uix.sagepub.comDownloaded from 

http://uix.sagepub.com/


The vari ance of the pos te rior is a com bi na tion of the vari ance of the prior and band width of 
the orig i nal sig nal ex pressed as a vari ance.  The in ter pre ta tion is com pli cated by the m in dex
from the se ries ex pan sion but oth er wise, the equa tion shows that if the prior’s vari ance is
large rel a tive to the sig nal’s band width, then the vari ance of the pos te rior is dom i nated by the 
sig nal in for ma tion and vice versa.

Sim i lar to the com bined vari ance, the vari able rep re sent ing the com bined mean of the
Gaussi an from com bin ing the like li hood func tion and the prior is

The form of this equa tion is sim i lar to the form of the com bined vari ance in Eq. (16). 
How ever, the new mean is ex actly a weighted av er age of prior and sig nal cor re la tion func -
tions means, where the weights are de ter mined by the vari ances of the prior and the sig nals’
cor re la tion func tion.  Prac ti cally, the way the vari ances and means of the sig nal and prior in -
ter act is the pri mary de ter mi nant of the fi nal qual ity of a dis place ment es ti mate.  Fi nally, it
was use ful to lump sev eral pa ram e ters to gether into a com mon scal ing term that was use ful
for all the mo ments of the pos te rior dis tri bu tion.  The scal ing fac tor is 

.The scal ing fac tor in cludes nor mal iza tion terms from the Gaussi an dis tri bu tion, SNR
scal ing and re sid u als from com plet ing the square to form the new Gaussi an dis tri bu tion.  Us -
ing the ex pres sions just de fined K, E[$ ~ ]t t0 0-  and E[($ ~ ) ]t t0 0

2-  can be ex pressed as 
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and

These ex pres sions are cum ber some, and they rep re sent the sum ma tion of the closed form
so lu tions ob tained from Eq. (15).  These equa tions are un for tu nately not very in tu itive but
the pri mary char ac ter is tic is that they are a nested se ries of si nu soids re sult ing from our very
ear li est as sump tions about the sig nals’ char ac ter is tics and their re sult ing cor re la tion func -
tions.  To a lesser ex tent, these fi nal equa tions are de ter mined by the as sump tion that the
prior dis tri bu tion is a Gaussi an. 

Cramer-Rao lower-bound com par i son

The an a lytic ex pres sion just de rived is for a bulk mo tion case with per fect cor re la tion, ex -
cept for decorrelation in duced by ther mal noise.  The Cramer-Rao lower bound that com -
pares most ap pro pri ately to this sig nal sce nario was de rived for ul tra sound by Walker and
Trahey.20  Their der i va tion of the Cramer-Rao lower bound is

where the vari ables cor re spond to the vari ables used in the der i va tion thus far and N0 is the
noise power.

Sim u la tions

The model of MMSE per for mance is com pared against sim u la tions.  Sim u la tions are per -
formed us ing a 1D scat ter ing ge om e try and con vo lu tion.  In or der to sim u late con tin u ous
scat terer po si tions, the con vo lu tion was im ple mented with a com plex pulse with phase ro ta -
tion to ac com mo date the ar bi trary po si tions. The scat terer am pli tudes were nor mally dis trib -
uted, and scat terer den sity within the -6 dB band width of the pulse was al ways above 15
scat ter ers per res o lu tion cell to en sure ap pro pri ate 1st and 2nd or der speckle sta tis tics.21  In the
sim u la tions and re sult ing Bayesian es ti ma tion, the noise power was as sumed to be known. 
(This con trasts with the prac ti cal method de vised for ob tain ing an ap pro pri ate like li hood
func tion for Bayesian es ti ma tion pro posed by Byram.5)  The noise it self was mod eled as
band-lim ited Gaussi an noise, where the band-limit was de fined by the sim u lated pulse.  For
each com bi na tion of in ves ti gated prior vari ance and bias rel a tive to the true dis place ment,
1000 pairs of rf A-lines were sim u lated.  The sam pling fre quency used was 10 GHz un less
oth er wise noted, which en sures a good er ror dis tri bu tion for the range of prior prob a bil i ties
ex plored in the re sults with out us ing subsample es ti ma tion.  Subsample es ti ma tion would in -

EF FECT OF PRIOR QUAL ITY ON TIME-DE LAY ES TI MA TION                                                                                      71

÷
÷

ø

ö

ç
ç

è

æ
÷
ø
öç

è
æ -+

³-
- 22

02

0

2

0

00

2

1
2

1

2
)~ˆ(

sig

sig

sig
eA

N

sw

s
swp

tts
(22)

( )

( ) ( )( )

( ) ú
û

ù
ê
ë

é -
-----

+----å+

+÷÷
ø

ö
çç
è

æ
å ÷÷

ø

ö
çç
è

æ -+
=

+-+-

=
-

¥

=
+

2

))2(('
exp})2(''2)]~')(2(sin[

')2('')]~')(2({cos[
!2

''
2

)1(1

!

1
]ˆ[

2

0

2

0

2

00

22

0

22

00

4

1)1(32

0
1

22

2
0

1

2

0

ws
wsmtmw

mwsstmw

smt

km
kmkm

kmkm
m

C

m

C

K
E

m

mmm

mmmm

m

k

nm

k
m

m

mm

m

m
m

m

m

m

 at DUKE UNIV on May 30, 2013uix.sagepub.comDownloaded from 

http://uix.sagepub.com/


tro duce an ad di tional source of bias that would com pli cate the re sults.  All the pa ram e ters
used in the model and the sim u la tions (un less stated oth er wise) are sum ma rized in ta ble 1.  

Tech ni cally, the model cal cu lates the mean-squared er ror of the es ti ma tor while the sim u -
la tion data are re ported as the mean of the squared re sid u als,

where ~t0 n
 is the es ti mated value,  $t0 n

 is the true value known from the sim u la tions and N is
num ber of sim u lated dis place ments.  Eq. (23) is re lated to the com monly-used re sid ual sum
of squares.

III. RE SULTS

Some spe cif ics of model im ple men ta tion are shown first.  The re sults show that the model
can not be im ple mented us ing dou ble-pre ci sion com puter arith me tic for SNR val ues larger
than roughly 23 dB.  This stems from the sum ma tion seen in Eqs. (19), (20) and (21).  In
these equa tions, as the SNR in creases, the peak value of the sum ma tion oc curs at higher val -
ues of m.  This is shown in fig ure 1a, which shows the in di vid ual terms (in dexed by m) be fore 
they are used to cal cu late the scal ing value (K) as a func tion of m for sev eral SNRs.  This is
im por tant be cause fac to ri als for in te gers greater than 170 can not be ex pressed as tra di tional
dou ble-pre ci sion float ing point num bers.  The peak value of the summed terms oc curs at
nearly the iden ti cal lo ca tion for Eqs. (19), (20) and (21).  This oc curs be cause the scal ing is
pre dom i nantly in ter play be tween Cm shown in Eq. (18) and m!  This is shown graph i cally in
fig ure 2.  (In the fu ture, this be hav ior may be ex ploit able to make ap prox i ma tions that are
more eas ily im ple mented us ing dou ble-pre ci sion com puter arith me tic.)

The model was de rived based on a sim ple Gaussi an-weighted pulse and unnormalized
cross-cor re la tion.  It is not ob vi ous how this trans lates to ker nel size.  It is shown em pir i cally
in fig ure 3 that the model roughly cor re sponds to a ker nel size of 2l, which is what was used
for the rest of the sim u la tions.
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Ta ble I. Data sim u la tion and dis place ment-track ing pa ram e ters.

Pa ram e ter Value

Cen ter fre quency 5 MHz

Band width 50%

A 1

c 1540 m/s

Sam pling fre quency 10 GHz

Ker nel length 2.75l

SNR 20 dB

mmax 170

Search off set ±l/4  

å -=
=

N

n
nN

MSR
1

2

00
)~ˆ(

1
tt

(23)

 at DUKE UNIV on May 30, 2013uix.sagepub.comDownloaded from 

http://uix.sagepub.com/


Mod eled and sim u lated re sults are shown in fig ure 4.  The re sults in this fig ure are plot ted
as a func tion of the prior mean and vari ance.  The mean and vari ance are both dis played rel a -

EF FECT OF PRIOR QUAL ITY ON TIME-DE LAY ES TI MA TION                                                                                      73

 

FIG. 2 Plots show ing the presummed val ues of the scal ing term, K and the nu mer a tors of the first two noncentral
mo ments be fore they are scaled by K. This fig ure dem on strates rel a tive or ders of mag ni tude and also shows that the
shape and po si tion of the three plots are largely the same. The ex am ple shown is for an SNR of 20 dB, a bias of 1% of
the pe riod and a prior band width that is 1% of the sig nal band width.

 

FIG 1 Plots dem on strat ing lim i ta tion of im ple ment ing the an a lytic model for pre dict ing per for mance of bi ased
time-de lay es ti ma tion. Fig ure on the left shows the nor mal ized com po nents of the scal ing term K as func tion of m
be fore they are summed.  K is the 0th or der mo ment shown in Eq. (19) and m in dexes the terms in the Tay lor se ries.
The fig ure shows that the curve as a func tion of m broad ens and the peak shifts to higher m as the SNR in creases.  The
plot on the right shows the peak value used to scale the plots in the right fig ure.  The peak val ues be come ex tremely
large as the cen ter of the func tion moves to wards higher val ues of m.  The fig ures show why the model breaks down
for SNRs larger than 22 dB when the model is im ple mented us ing dou ble-pre ci sion arith me tic.
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tive to the char ac ter is tics of the im ag ing pulse.  To this end, the prior mean is ex pressed as a
bias rel a tive to the true dis place ment as a per cent age of the pe riod of the cen ter fre quency
and the prior vari ance is plot ted as a frac tion of the band width of the ul tra sound pulse.  The
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FIG. 3 In ef fect, the model is de rived with out any de pend ency on ker nel length, which is a sig nif i cant de ter mi -
nant in per for mance.  In or der to de ter mine an ap pro pri ate ker nel length for the sim u la tions, a num ber of ker nel
lengths were com pared to the per for mance of the model for a case with a broad prior that does not in flu ence the fi nal
es ti mate.  (The band width of the prior was 10 times wider than the band width of the pulse.)  The fig ure shows where
unnormalized cross-cor re la tion-based meth ods are sim i lar to the per for mance in di cated by the model.  As a point of
ref er ence, the per for mance of nor mal ized cross-cor re la tion is shown and the MMSE and the max i mum like li hood
es ti mate (MLE) are also shown. For the set of pa ram e ters cho sen, the MMSE and the MLE yield in dis tin guish able
re sults.

 

FIG.  4 Com par i son of mod eled and sim u lated MSE. The mod eled MSE is shown on the left and the MSE re sult -
ing from the sim u la tions is shown on the right.  The MSE re sults are plot ted as a func tion of the prior prob a bil ity’s
band width rel a tive to the band width of the sig nal and the bias is plot ted rel a tive to the cen ter wave length.  The re sults 
are shown for the full range of the eval u ated pa ram e ter space.
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re sults shown in the fig ure show that the model and the sim u la tions are gen er ally in agree -
ment but are hard to com pare di rectly when dis played as side-by-side sur faces.  In or der to
fa cil i tate more ex act com par i sons, the model and sim u la tions are plot ted as a sin gle func tion
of the prior’s band width and also the prior’s bias.  These plots also in clude the Cramer-Rao
lower bound, which fa cil i tates com par i son in or der to de ter mine the do main where the new
es ti ma tor is better than un bi ased es ti ma tors.

The rel a tive per for mance be tween the model and the sim u la tions is more eas ily seen in
fig ures 5 and 6.  These two fig ures show that there is an ap prox i mate agree ment be tween the
model and sim u la tions and this agree ment is best when the band width of the prior is only one 
or two or ders of mag ni tude smaller than the band width of the sig nal.  While it is un for tu nate
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FIG. 5 Com par i son of  mod eled and sim u lated MSE as a func tion of prior band width rel a tive to sig nal band -
width.  Plots are shown for six dif fer ent bi ases be tween 0.000001 and 0.1 in units of T0.  The plots more ad e quately
high light the dif fer ences be tween the model and sim u lated re sults.  The dif fer ences be tween the two sets of re sults
be come more se vere as the bias gets smaller.
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that the model does not match the sim u la tions better in the ul trawide band width re gime,
these re gions rep re sent a place where there is so much con fi dence in the prior in for ma tion
that the data has al most no in flu ence on the fi nal es ti mate.  This is not ex pected to be a gen er -
ally-use ful do main of op er a tion for Bayesian-style es ti ma tors in ul tra sound TDE.

In or der to show the ef fect of sam pling fre quency on the es ti mates from sim u lated data,
sev eral plots are shown for var i ous sam pling fre quen cies.  These plots are shown in fig ure 7. 
The plots gen er ally show that the sam pling fre quency does not af fect the slope of the sim u la -
tion in the tran si tion re gion be tween bias-lim ited be hav ior and band width- (vari ance) lim -
ited be hav ior.  Ad di tion ally, the sam pling fre quency does not af fect the fi nal set tling level
for the bias limit as a func tion of prior band width but it does af fect the max i mum prior band -
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FIG. 6 Com par i son of mod eled and sim u lated MSE as a func tion of prior bias rel a tive to signal wave length.
Plots are shown for six dif fer ent prior bandwidths rel a tive to sig nal band width.  The re sults show that for a rel e vant
range of the pa ram e ter space in ves ti gated, the model closely pre dicts the sim u la tion per for mance.
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width where the es ti mates set tle into the bias limit.  This be hav ior sug gests that the ex pected
width of the prior in for ma tion could be an im por tant con sid er ation when de ter min ing an ap -
pro pri ate sam pling fre quency for bi ased-mo tion es ti ma tion.  These re sults will prob a bly
change if a subsample es ti ma tor were in tro duced.

IV. DIS CUS SION

The util ity of the re sults just pre sented is two-fold.  First, a model was de vel oped that
could be used pre dic tively to as sess whether an es ti mate is bounded by the CRLB or sur -
passes the CRLB.  Sec ond, the nec es sary prior in for ma tion to make es ti mates that sur pass
the CRLB and have im proved qual ity was as sessed.

The de vel oped model does not agree ex actly with sim u la tion but it gen er ally shows good
agree ment within the most rel e vant re gion of the tested pa ram e ter space.  The model and the
sim u la tions di verge as the prior gets narrower by or ders of mag ni tude rel a tive to the sig nal’s
band width.  The pri mary dif fer ence be tween sim u la tion and model is that the sim u la tions
show faster con ver gence to wards the ‘bias’ noise floor as a func tion of prior band width than
the model re sults.  There are two sources that seem to most cred i bly ac count for the dif fer -
ence be tween the sim u la tion and mod eled re sults.  First, the model der i va tion makes sev eral
as sump tions, spe cif i cally the in tro duc tion of a se ries ex pan sion.  The se ries ex pan sion could
be a source of er ror when the model is ac tu ally im ple mented be cause the bulk of the ex pan -
sion terms that con trib ute to the fi nal bias and vari ance are not near the be gin ning of the se -
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FIG. 7 Com par i son of mod eled and sim u lated MSE as a func tion of the prior band width rel a tive to the sig nal
band width for dif fer ent sam pling fre quen cies and a bias of 0.001T0. Plots are shown for four dif fer ent sam pling fre -
quen cies.
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ries, as seen in fig ure 1a.  This may ex pose the model to nu mer i cal er rors since the nu mer a tor
and de nom i na tor at large m’s both end up be ing ex tremely large val ues, which com bine to
form very small num bers.  Ad di tion ally, in gen eral, the model and sim u la tions match well
but the like li hood func tion in Eq. (4) is for the case of white Gaussi an noise.  The sim u la tions
were im ple mented with the more re al is tic case of band-lim ited Gaussi an noise.  The like li -
hood func tion for white Gaussi an noise is known to pro duce con ser va tive re sults when used
on sig nals with cor re lated noise,22 which is con sis tent with the pre sented re sults.  The lack of
better agree ment be tween the sim u lated and mod eled data is un for tu nate but it is al most a
moot point since the dis agree ment pre dom i nantly oc curs in re gions where the prior is a thou -
sand to a mil lion times nar rower than the sig nal’s pulse width.  In this re gion, the data ef fec -
tively be come mean ing less rel a tive to the dom i nance of the prior in for ma tion.  Prac ti cally,
this re gion of dis agree ment mat ters lit tle for pre dict ing whether es ti mates are CRLB lim ited
or can be ex pected to be better than the CRLB.  This should work since the re sults in di cate
that prior bandwidths that al low for im proved es ti ma tor per for mance are in de pend ent of the
bias.  So, for a given set of pulse char ac ter is tics, it should be pos si ble to pre dict the min i mum
prior band width to pro duce es ti mates that ex ceed the CRLB.  

The abil ity to pre dict whether the prior’s band width is suf fi ciently broad rel a tive to the
sig nal band width to pro duce dis place ment es ti mates sur pass ing the CRLB is only use ful if
the bias is also suf fi ciently small.  The qual i fi ca tion for ‘suf fi ciently small’ bias can be ob -
served from the re sults.  The re sults show that bi ases that are less than about 0.01T0 will re -
sult in dis place ment es ti mates that are better than the CRLB.  In or der to put this in
per spec tive, the CRLB as a stan dard de vi a tion is also about 0.01T0.  This is sig nif i cant be -
cause it in di cates that there is enough in for ma tion con tained within a min i mum vari ance un -
bi ased es ti mate to ap pro pri ately in flu ence a prior dis tri bu tion to al low for an es ti mate that
sur passes the Cramer-Rao lower bound about 68% of the time (as sum ing nor mal sta tis tics). 
Nearly all of the es ti mates (99.7%) ob tained us ing an un bi ased min i mum vari ance es ti ma tor
are within 0.03T0.  Based on the re sults ,even the worst of the min i mum vari ance es ti mates, if 
used as a mean for a prior dis tri bu tion, should not be ex pected to have per for mance that is no -
tice ably dif fer ent than the CRLB.

Ad di tion ally, in or der to be clear, a lower-bound on es ti ma tor per for mance for a Bayesian
style mean pos te rior es ti ma tor has not been de rived.  These types of lower bounds do ex ist in
the ory but they can only be im ple mented for very spe cific prac ti cal ap pli ca tions,23 which do 
not ap ply to the spe cific case pre sented here.  How ever, an ag gres sive lower-bound for bi -
ased ul tra sonic time-de lay es ti ma tion us ing a dif fer ent sig nal model or prior should not be
ruled out.

Fi nally, it is ap pro pri ate to re it er ate that re stric tive as sump tions were made in the course of 
this der i va tion.  The der i va tions fi nal re sults are mostly lim ited by the as sump tion of bulk
mo tion but they are also lim ited by the as sump tion that the prior is a Gaussi an dis tri bu tion. 
The goal of the as sump tions was to main tain an a lytic trac ta bil ity so that the ef fect of prior in -
for ma tion on the qual ity of dis place ment es ti mates could be as sessed.  One likely by prod uct
of the as sump tions is that for mo tion es ti mated in the pres ence of sig nif i cant scat terer
decorrelation (e.g., blood flow or quasi stat ic elastography), the an a lytic der i va tions pre -
sented here are op ti mis tic.  Ad dress ing more com pli cated dis place ment sce nar ios is an on -
go ing task.

V. CON CLU SIONS 

A pre dic tive model has been de rived for Bayesian time-de lay es ti ma tion. It was shown
that bi ases with suf fi cient ad di tional in for ma tion to im prove the qual ity over the CRLB are
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ob tain able from CRLB lim ited es ti mates.  These re sults pro vide fur ther sup port to pre vi -
ously-pre sented re sults for the use ful ness and fea si bil ity of bi ased time-de lay es ti ma tors for
clin i cal ul tra sound.

AC KNOWL EDG MENTS

The au thors thank Ned Danieley for com puter sup port, Marko Jakovljevic for use ful con -
ver sa tions and Al bert Chang for for mat ting the fi nal equa tions.  This work was sup ported by
NIH grants R37HL096023 and T32EB001040.

REF ER ENCES

1. Embree PM. The Ac cu rate Ul tra sonic Mea sure ment of Vol ume Flow of Blood by Time-Do main Correlation,
(Ph.D. the sis, Uni ver sity of Il li nois, Ur bana, IL, 1985).

2. Walker W. A fun da men tal limit on the per for mance of cor re la tion based phase cor rec tion and flow es ti ma tion
tech niques, in Adap tive Ul tra sonic Im ag ing Per for mance for Near-Field Aberrating Lay ers, pp. 18-46 (Ph.D. the -
sis, Duke Uni ver sity, Dur ham, 1995).

3. Walker W. A fun da men tal limit on de lay es ti ma tion us ing par tially cor re lated speckle sig nals, in Adap tive Ul -
tra sonic Im ag ing Performance for Near-Field Aberrating Layers, pp. 47-68 (Ph.D. the sis, Duke Uni ver sity, Dur -
ham, 1995).

4. Pinton GF, Dahl JJ, Trahey GE. Rapid track ing of small dis place ments with ul tra sound, IEEE Trans Ultrason
Ferroelec Freq Contr 53, 1103–1117 (2006).

5. Byram BC. Bi ased ul tra sonic time-de lay es ti ma tion, in Chronic Myo car dial Iinfarct Vi su al iza tion Us ing 3D
Ultrasound, pp. 47-135 (Ph.D. the sis, Duke Uni ver sity, Dur ham, 2011).

6. Kay SM. The Bayesian phi los o phy, in Fun da men tals of Sta tis ti cal Sig nal Pro cess ing: Es ti ma tion The ory, pp.
309-340 (Prentice-Hall, Inc., Up per Sad dle River, 1993).

7. Zahiri-Azar R, Salcudean S. Mo tion es ti ma tion in ul tra sound im ages us ing time do main cross cor re la tion with
prior es ti mates, IEEE Trans. Biomed Engin 53, 1990–2000 (2006).

8. Pellot-Barakat C, Frouin F, Insana M, Herment A. Ul tra sound elastography based on multiscale es ti ma tions of
reg u lar ized dis place ment fields, IEEE Trans Med Im ag ing 23, 153–163 (2004).

9. Tarantola A. In verse Prob lem The ory: Meth ods for Data Fit ting and Model Pa ram e ter Es ti ma tion (Elsevier,
Am ster dam, 1987). 

10. Kay SM. Max i mum like li hood es ti ma tion, in Fun da men tals of Sta tis ti cal Sig nal Pro cess ing: Es ti ma tion The -
ory, pp. 157-218 (Prentice-Hall, Inc., Up per Sad dle River, 1993).

11. Bar-Sha lom Y, Fortmann TE. Multitarget track ing us ing joint proba bil is tic data as so ci a tion, in Sta tis ti cal Sig -
nal Pro cess ing, pp. 353-363, (Mar cel Dekker, New York, 1984).

12. van Trees HL. Pa ram e ter es ti ma tion: slowly fluc tu at ing point tar gets, in De tec tion, Es ti ma tion and Mod u la -
tion The ory, Part III (Wiley, New York, 1971).

13. Urkowitz H. Un known pa ram e ters and com pos ite hy poth e ses, in Sig nal The ory and Ran dom Pro cesses, pp.
583-626 (Artech House, Dedham, 1983).

14. Walker W. Cor rec tion fac tor for a noisy ref er ence sig nal, in Adap tive Ul tra sonic Im ag ing Per for mance for
Near-Field Aberrating Lay ers, pp. 123-124 (Ph.D. the sis, Duke Uni ver sity, Dur ham, 1995).

15. Jaynes ET. The cen tral, Gaussi an or nor mal dis tri bu tion, in Prob a bil ity The ory: The Logic of Sci ence (Vol 1),
pp. 198-242 (Cam bridge Uni ver sity Press, 2003).

16. Jaynes ET. Dis crete prior prob a bil i ties: the en tropy prin ci ple, in Prob a bil ity The ory: The Logic of Sci ence
(Vol 1), pp. 343-396 (Cam bridge Uni ver sity Press, 2003).

17. Chaturvedi P,  Insana MF, Hall TJ. 2-D companding for noise re duc tion in strain im ag ing, IEEE Trans
Ultrason Ferroelect Freq Contr 45, 179 –191 (1998).

EF FECT OF PRIOR QUAL ITY ON TIME-DE LAY ES TI MA TION                                                                                      79

 at DUKE UNIV on May 30, 2013uix.sagepub.comDownloaded from 

http://uix.sagepub.com/


18. Konofagou E, Ophir J. A new elastographic method for es ti ma tion and im ag ing of lat eral dis place ments, lat -
eral strains, cor rected ax ial strains and Pois son’s ra tios in tis sues, Ul tra sound Med Biol 24, 1183-1199 (1998).

19. Byram BC. Sup port ing iden ti ties and sub sti tu tions, in Chronic Myo car dial Iinfarct Vi su al iza tion Us ing 3D
Ultrasound, pp. 191-192 (Ph.D. the sis, Duke Uni ver sity, Dur ham, 2011).

20. Walker W, Trahey G. A fun da men tal limit on the per for mance of cor re la tion-based phase cor rec tion and flow
es ti ma tion tech niques, IEEE Trans Ultrason Ferroelect Freq Contr 41, 644–654 (1994).

21. Palmeri ML, McAleavey SA, Trahey GE, Night in gale KR. Ul tra sonic track ing of acous tic ra di a tion force-in -
duced dis place ments in ho mo ge neous me dia, IEEE Trans Ultrason Ferroelectr Freq Contr 53, 1300- 1313 (2006).

22. Bretthorst GL. Sin gle sta tion ary si nu soid plus noise, in Bayesian Spec trum Anal y sis and Pa ram e ter Es ti ma -
tion, pp. 13-30 (Springer-Verlag, Berlin, 1988).

23. Weinstein E and Weiss AJ. A gen eral class of lower bounds in pa ram e ter es ti ma tion, IEEE Trans Info The ory
34, 338–342 (1988).

80 BYRAM ET AL

 at DUKE UNIV on May 30, 2013uix.sagepub.comDownloaded from 

http://uix.sagepub.com/

