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Abstract—Accurate and precise displacement estimation 
has been a hallmark of clinical ultrasound. Displacement esti-
mation accuracy has largely been considered to be limited by 
the Cramer–Rao lower bound (CRLB). However, the CRLB 
only describes the minimum variance obtainable from unbiased 
estimators. Unbiased estimators are generally implemented 
using Bayes’ theorem, which requires a likelihood function. 
The classic likelihood function for the displacement estimation 
problem is not discriminative and is difficult to implement for 
clinically relevant ultrasound with diffuse scattering. Because 
the classic likelihood function is not effective, a perturbation 
is proposed.

The proposed likelihood function was evaluated and com-
pared against the classic likelihood function by converting both 
to posterior probability density functions (PDFs) using a non-
informative prior. Example results are reported for bulk mo-
tion simulations using a 6λ tracking kernel and 30 dB SNR for 
1000 data realizations. The canonical likelihood function as-
signed the true displacement a mean probability of only 0.070 
± 0.020, whereas the new likelihood function assigned the true 
displacement a much higher probability of 0.22 ± 0.16. The 
new likelihood function shows improvements at least for bulk 
motion, acoustic radiation force induced motion, and compres-
sive motion, and at least for SNRs greater than 10 dB and 
kernel lengths between 1.5 and 12λ.

I. Introduction

One of the hallmarks of clinical ultrasound has been 
accurate and precise displacement estimation. The 

effectiveness of ultrasonic displacement estimation has al-
lowed it to become the dominant modality for imaging 
blood flow and has largely made new ultrasound-based 
imaging modalities such as acoustic radiation force im-
pulse (ARFI) imaging and strain imaging possible.

Generally, further development of clinical ultrasonic 
displacement estimators focuses on some combination of 
improving computational efficiency [1]–[4] and expanding 
the parameter space over which estimators approach the 
Cramer–Rao lower bound (CRLB) [5]–[7]. The notion of 
a CRLB for the ultrasound displacement estimation prob-
lem has existed at least since Embree [8]. Although the 

CRLB is a useful benchmark for displacement estimation, 
it only describes the limit of a minimum variance unbiased 
estimator (MVUE) rather than a fundamental limit for all 
displacement estimators. Estimators with a small amount 
of algorithmic bias can be designed to produce estimates 
that have a significantly lower mean-square error (MSE) 
than that described by the CRLB [9], [10].

Estimators surpassing performance defined by the 
CRLB have not been described in the ultrasound displace-
ment estimation literature; however, the notion of a biased 
estimator does exist. Several groups have produced esti-
mation schemes in which the displacement search region 
is shifted and reduced based on displacements measured 
at adjacent positions [1], [2], [11]. (These approaches can 
be seen as specific realizations of the methods developed 
here.) Another method that has recently gained attention 
specifically for strain imaging is regularized displacement 
estimation [12]. Regularized displacement estimation at-
tempts to maximize (or minimize) the combination of a 
traditional signal similarity factor (e.g., normalized cross-
correlation, sum absolute difference, etc.) and a continuity 
constraint. The continuity constraint is usually construct-
ed to penalize large displacement gradients and acts to 
bias the final displacement estimate. Although regularized 
displacement estimation is appropriately conceptualized 
as a biased algorithm, the publications featuring these 
algorithms do not provide sufficiently detailed results to 
determine whether these algorithms achieve an improved 
MSE over an MVUE [12]–[15].1

Ultrasound displacement estimation (and specifically 
biased estimation) needs an implementable likelihood 
function. Likelihood functions are extremely useful be-
cause they can be employed as part of a Bayesian frame-
work to express knowledge of a parameter (such as tissue 
displacement) as a probability density function (PDF) [9]. 
These PDFs can then, in turn, be used to create biased 
parameter estimates. Biased parameter estimates have 
some attractive properties and will be the subject of the 
companion paper. This paper will focus on demonstrat-
ing an effective and implementable likelihood function for 
ultrasonic displacement estimation problems.Manuscript received May 11, 2012; accepted August 30, 2012. This re-
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1	It is suspected that the specific implementations of regularized dis-
placement estimation are too coarsely sampled to achieve any improve-
ments of the mean-square error.
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II. Methods

A. Overview

Bayes’ theorem is a simple equation describing the ap-
propriate mechanism for combining previously and newly 
acquired information [9]. Bayes’ theorem will be used, in 
the case of the ultrasound displacement estimation prob-
lem, to appropriately combine information from a local 
similarity function and prior information about the dis-
placement to provide a better estimate for the current dis-
placement estimate. For the purposes of this paper, Bayes’ 
theorem is expressed as
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where x is the data, τ0 is the displacement, and m indexes 
kernel location axially. The term pm(x | τ0) denotes the 
likelihood function for the mth kernel axially, pm(τ0) is the 
prior distribution, and pm(τ0 | x) is the posterior distribu-
tion. The likelihood function is the means by which data 
are incorporated into the final PDF describing τ0. The 
prior PDF expresses previous knowledge of the displace-
ment independent of the data. The posterior is the final 
PDF and represents the final state of knowledge after the 
current data and previous knowledge have been combined. 
The likelihood function, pm(x | τ0), will be the focus of the 
rest of this paper.

B. Likelihood Function for Ultrasonic  
Time-Delay Estimation

The likelihood function for the generic displacement 
estimation problem can be found in several sources [10], 
[16]–[18], and is
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where s1() is the original signal, s2() is the displaced signal, 
τ0 is the displacement between signals, ∆ is the sampling 
period, M is the number of samples in the data record 
(i.e., kernel length), and σ2 is the noise power.2 The likeli-
hood function in (2) is often used to derive the maximum 
likelihood estimator, which has a form that resembles the 

similarity metrics commonly used for ultrasound displace-
ment estimation.3

For use with Bayes’ theorem to calculate displacement 
probabilities (and eventually displacement estimates), the 
likelihood function can be expressed in a reduced form be-
cause terms that are not a function of τ0 will be eliminated 
when the posterior distribution is calculated using Bayes’ 
theorem (1). Without losing any relevant information, the 
likelihood function can be represented as
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The argument of (3) is nearly identical to the argument 
of the MLE in footnote 3. The sole additional term is a 
scaling parameter that modulates the width of the like-
lihood function based on the thermal noise power. The 
noise power scaling is very intuitive. It allows the like-
lihood function to be continuously transformed between 
a δ–function as the noise power approaches zero and a 
rectangle function the size of the specified search region as 
the noise power approaches ∞.

There are two practical difficulties with (3). The first 
problem is that estimates of electronic noise power are 
difficult to obtain in in vivo (or even phantom) scenarios 
and often will not even represent the dominant source of 
estimation noise [22]–[24]. The second problem is that un-
normalized cross-correlation is known to be a poor simi-
larity metric for ultrasound displacement estimation [25]. 
A possible solution to these problems is to perturb (3) to 
create a likelihood function more suitable for the ultra-
sonic displacement estimation problem. To this end, we 
propose the following likelihood function:
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where σm1
2  and σm2

2  are the variances of the portions of 
each signal used for each step of the correlation function 
calculation, α is a scaling term that will be empirically 
shown to be primarily a function of kernel length, and 
SNR is the signal-to-noise ratio. The proposed likelihood 
function is now no longer scaled by the electronic noise 
power but instead a generic SNR term. Additionally, 
cross-correlation has been replaced by normalized cross-
correlation. The generic SNR term allows other noise 

3	The maximum likelihood estimator (MLE) is
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This equation describes un-normalized cross-correlation; however, usu-
ally in ultrasound, normalized cross-correlation is treated as a substitute 
MLE. The MLE is attractive because it asymptotically approaches the 
CRLB as M (the length of the data record) approaches ∞ [10]. In prac-
tice, it has been observed that performance of the MLE approaches the 
CRLB with kernel lengths that are 4λ or less [20], [21].

2	The noise power has been doubled to reflect the noise present on both 
signals based on the calculations presented by Walker [19].
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sources to be introduced, specifically signal correlation. 
The two methods of determining the SNR will be the nor-
mal method of calculating the thermal SNR,

	 SNRthermal
signal

noise
=
P
P ,	 (5)

and the peak-correlation-coefficient-derived estimate of 
the SNR [26],

	 SNR max

max
ρ

ρ
ρ=

−1 ,	 (6)

where ρmax is the peak of the normalized cross-correlation 
function. Normalized cross-correlation is shown in (4) as 
everything to the right of, and including, the summation. 
The thermal SNR will be treated as a known value be-
cause the appropriate levels of noise added during data 
simulation are known. The SNR calculated from the maxi-
mum correlation will be an estimated quantity.4 

C. Likelihood Function Evaluation

To compare the exact analytic likelihood function with 
the modified likelihood function, a quantitative perfor-
mance metric is required. A useful quantitative metric of 
likelihood function performance should compare how dis-
criminative the various likelihood functions are for a given 
quality of data. In terms of probabilities, this means the 
probability assigned to a given displacement should cor-
respond to the quality of the data. To facilitate likelihood 
function evaluation, likelihood functions (which are not 
PDFs) can be converted to posterior probability distribu-
tions using a non-informative prior:
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where τα and τβ are the upper and lower limits of the 
traditional search region. The non-informative prior for 
displacement estimation is a uniform PDF corresponding 
to the search region that would have been used for a maxi-
mum likelihood estimate (e.g., normalized cross-correla-
tion). Using the posterior distribution, the quality metric 
will be the probability of the true displacement expressed 
by the posterior distribution, calculated as
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where M is the number of kernels through depth, τtrue is 
the known displacement, and ε describes the range of lags 
to integrate over. ε is required because the probability of 
a single point in a continuous distribution is always zero, 
and as will be seen, in some cases, the confidence in τtrue 
is several pixels.

Additionally, the quality metric has been expressed us-
ing an integral in (8) because τ0 is appropriately mod-
eled as continuous. In practice, the quality metric in (8) 
will not be realizable using the methods presented here, 
for which only a sampled distribution will be available. 
Therefore, a more practical quality metric will be used for 
the data in this study:
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where  •  denotes the nearest integer.
To reiterate, the quality metric represents the probabil-

ity of the true displacement profile through depth occur-
ring given the data, assuming the displacements are inde-
pendent (enforceable through data downsampling). This 
quality metric was chosen with two intentions in mind. 

TABLE I. Basic Simulation Parameters. 

Parameter Value

Center frequency 5 MHz
Bandwidth 50%
Pulse envelope Gaussian
C 1540 m/s
depthmax 5 cm
Sampling frequency 10 GHz
Kernel length 3λ
SNR 20 dB
Strain 1%

TABLE II. Acoustic Radiation Force Impulse (ARFI)  
Imaging Simulation Parameters. 

Parameter Value

Tracking center frequency 7 MHz
Tracking f-number 0.5
Radiation force center frequency 2.22 MHz
Radiation force f-number 2
Radiation force pulse duration 180 µs
Focal depth 2 cm
Tracking pulse transmit cycles 2
C 1540 m/s
depthmax 5 cm
Sampling frequency 100 MHz
Kernel length 1.5λ
SNR 20 dB
ARFI PRF 10 kHz
Young’s modulus 8.5 kPa
ρ 1.0 g/cm3

ν 0.499

4	It may seem reasonable to combine the correlation SNR and the 
thermal SNR into a total SNR [27] using

SNR
SNR SNR
SNR SNRtotal

thermal

thermal
=
+ +

ρ

ρ1 ; 

however, this equation is only relevant if the correlation coefficient is 
not corrupted by thermal noise. In all cases when both noise types are 
present—including simulations—the correlation coefficient reflects both 
noise sources.
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First, when only relative probabilities of displacement are 
desired, it makes sense to have a probability distribution 
that is expected to give the highest possible probability to 
the true displacement. Second, when biased estimates are 
implemented in the companion paper [28], the distribution 
that maximizes the probability of the true displacement 
should provide the most appropriate representation of the 
data relative to the prior distribution. Without appropri-
ate representation of the data, there is a strong danger 
that the data will be inappropriately overwhelmed by 
prior information.

Fig. 1. This figure demonstrates how the probability density function 
concentrates for several values of the scaling parameter α from (4). The 
right concentration of the function provides the most probability to the 
true displacement. The probabilities are shown as posterior probability 
density functions, which are made using (4) and a uniform prior distribu-
tion. For the example shown, α = 1 would give the highest probability to 
the true displacement. The example comes from a bulk motion displace-
ment simulation with 20 dB of thermal noise added to the signal and a 
3λ kernel.

Fig. 2. These images show the final acoustic radiation force impulse 
(ARFI) posterior distributions for each depth (a) without and (b) with 
similarity metric scaling. The true displacement is also shown in red. 
The example demonstrates that scaling the similarity metric significant-
ly concentrates the probability about the true displacement. The image 
with appropriate scaling is saturated because the dynamic range of the 
probability density functions (PDFs) through depth is too high to visual-
ize otherwise.

Fig. 3. This figure compares the mean versus the median as the statistic describing the effectiveness of various likelihood functions. The mean of all 
of the probabilities for each value of the scaling parameter α is shown in green. The median value is the red line on the box plots. The box plots show 
the 25% and 75% percentiles and the box plot whiskers show 1.5 times the interquartile distance beyond the closest quartile. The red points show 
points in the sample that lay outside the 1.5 interquartile distance. The figure shows that the median is discriminative, but the mean is misleading.
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D. Likelihood Function: Simulations

The methods for computing the likelihood function 
are evaluated using several different sets of simulations, 
each with different levels of correlation noise. Simula-
tions were performed for 1-D scatterer configurations for 
bulk displacements and compression-induced (i.e., strain) 
displacements. Simulations were also performed for 3-D 
scattering geometries for acoustic radiation force (ARF)-
induced displacements.

The 1-D scattering geometry simulations were all per-
formed using convolution with a static point spread func-
tion and complex pulse. To allow for arbitrary scatterer 
placement (rather than a fixed grid) the complex pulse 
was phase-shifted based on the position of each scatterer. 
Resulting complex signals were stripped of their imagi-
nary components to produce RF A-lines. The simulations 
were performed with an average of 35 scatterers per −6-
dB resolution cell; 12 to 15 scatterers are adequate, but 
more scatterers were included to avoid gaps of scatterers 

Fig. 4. This figure compares different methods for calculating the likelihood function for bulk motion-induced displacements. The various likelihood 
functions’ performances are plotted as a function of α. The comparisons are shown for several thermal noise levels—10, 30, and 40 dB—and two 
different kernel sizes—3λ and 6λ. The proposed likelihood function implemented with SNRtherm or SNRρ is more discriminative than the classic like-
lihood function. The proposed likelihood function implemented with SNRtherm always outperforms the likelihood function implemented with SNRρ. 
This is expected because SNRtherm is a known quantity from the simulations as opposed to an estimated quanity like SNRρ. The difference between 
these two methods decreases as the kernel length increases resulting in a better estimate by SNRρ. The 40 dB case is shown for completeness but 
represents a degenerate case, as described in the text.
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for step displacements or large strains [29]. The initial set 
of scatterer positions for a given realization was positioned 
randomly with a Gaussian distribution. The amplitude 
of each scatterer was also randomly distributed with a 
Gaussian distribution.

The thermal noise for all the simulations was modeled 
as a band-limited additive Gaussian random process. The 
band-limit of the noise was based on the pulse character-
istics of the simulated signals.

The proposed form of the likelihood function shown 
in (4), calculated using SNRthermal and using SNRρ for a 
range of α values, is compared with the classic likelihood 
function (3). The proposed form of the likelihood function 
is also compared with a likelihood function constructed 
from a normalized cross-correlation function but without 
any scaling term to demonstrate the scaling term’s impor-
tance. The likelihood functions are compared using the 
quality metric shown in (8). The actual calculation of the 
quality metric varies slightly for each simulation and will 
be addressed along with the specific description of each set 
of simulation data.

The statistic used to assess likelihood performance will 
be the median. Median statistic usage will be empirically 
justified as more appropriate than the mean in Section III.

The bulk displacement simulations to evaluate likeli-
hood function efficacy were performed first. The bulk mo-
tion simulation data was comprised of 1000 1-D RF-data 
pairs with a constant displacement through depth between 
the two A-lines. The actual bulk displacement between 
the pairs of simulated A-lines were drawn from a normal 
distribution with zero-mean and a standard deviation of 
λ/20 to avoid any bias or artifact that could be intro-
duced by consistent patterns of sub-sample displacements 
relative to the sampling frequency. The relatively small 
displacement range (σ = λ/20) was chosen to decrease the 
necessary search region size and the corresponding com-
putational overhead of calculating large displacements. 
Unless otherwise specified, the simulation parameters are 

those shown in Table I. The bulk displacement likelihood 
functions were evaluated using the quality metric calculat-
ed from the posterior distribution of a single displacement 
estimate (rather than a series of posterior distributions 
through depth). Because the true displacement is known 
exactly but will almost always lie between two samples, 
the value of ε for calculating the quality metric is a single 
sampling period.

The strain simulations analyzed compressional strains 
between 0.01% and 10% and at 20 dB SNR. Additionally, 
the likelihood functions were compared for SNRs of 10, 20, 
30, 40 dB, and no noise with a strain of 1%. The quality 
metrics for the likelihood functions for strained data are 
calculated for the full profile through depth. The depth 
locations of the posterior distributions were downsampled 
to allow independence among the posterior distributions. 
Because the strain and displacement profile is known ex-
actly through depth, an ε of one sampling period in (10) 
is used when calculating the quality metric. For the strain 
simulations, 250 speckle and noise realizations were simu-
lated for each case.

ARFI simulations are used to evaluate the proposed 
likelihood function under more realistic displacement pro-
files and beamforming. The ARFI simulations utilize the 
method developed by Palmeri et al. [24]. Palmeri’s method 
combines finite element simulation of the ARFI dynamic 
response in tissue with realistic ultrasound beamforming 
simulated using Field II [30], [31]. For the ARFI simula-
tions, 100 independent speckle realizations in a homoge-
neous region were generated using the parameters shown 
in Table II. The likelihood functions were evaluated using 
the described quality metric. The quality metric summa-
rizes the quality of the probabilities through the full depth 
of the simulated displacements.

For ARF-induced displacements, the displacements 
measureable by relevant transducer configurations under-
estimate the true displacements by as much as 50% [29]. 
Because of this systematic bias caused by scatterer shear-
ing under the point spread function, the displacement 
profile used for τtrue to calculate the probability statistics 
is taken to be the mean of all of the realizations with dis-
placements estimated using normalized cross-correlation5 
and ε is set to be 4 sampling periods, reflecting the stan-
dard deviation of all of the ARF dynamic responses used 
to calculate the average displacement profile.

III. Results

First, several example results are presented to add ad-
ditional motivation to the problem and build intuition. 
The first example result is shown in Fig. 1, which shows 

5	Specifically, when calculating the error for a specific speckle and noise 
realization, the true displacement profile was calculated with all of the 
noiseless speckle realizations except the speckle realization corresponding 
to the speckle realization being analyzed.

Fig. 5. This figure shows the value of α that maximizes the median prob-
ability. The data are displayed as a function of kernel length for several 
levels of thermal noise.
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the effect of modulating the scaling constant α in (4). 
The limits of the scaling constant (0 and ∞) have al-
ready been stated to result in a rectangular window and 
a delta function, respectively; some intermediate forms of 
the posterior distribution are shown in Fig. 1. The figure 
demonstrates how various scaling constants change the 
amount of probability assigned to the true displacement. 
This example is from a bulk displacement example with 
a small search region. An example with a larger search 
region would show multiple peaks for intermediate values 
of α, but would still resolve itself into a uniform PDF or a 

delta function at the scaling limits. Additionally, because 
the transformation from normalized cross-correlation 
function to likelihood function is monotonic, the location 
of the peak value of each curve is preserved but other 
characteristics of the shape change.

The second example result shows a similar effect on 
a full set of ARFI displacements through depth. This is 
shown in Fig. 2. The figure shows posterior distributions 
(assuming a non-informative prior) and the true ARFI 
displacement, as described in Section II-D. The figure 
shows the posterior distribution formed with and without 

Fig. 6. This figure compares different methods of calculating likelihood functions for compression-induced displacements. The classic likelihood func-
tion, the direct transformation of normalized cross-correlation, and the proposed method with both specified and data-derived SNR are shown. The 
median values are displayed as the log of the respective median values. Additionally, the y-axis represents the full probability of the entire displace-
ment profile through depth.
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any scaling to emphasize the importance of effective scal-
ing for appropriate concentration of probability around 
the true displacement.

The statistic used to assess likelihood function discrimi-
nation will be the median. The use of the median statistic 
is justified by Fig. 3, which shows an example displace-
ment scenario plotted as a function of the scaling term, α. 
The figure shows that the median probability from 1000 
speckle realizations has a peak as a function of α, and that 
the median is sensitive to underscaling and overscaling of 
the exponential argument in (4). In contrast, the mean 
probability of the same speckle realizations as a function 
of α is nearly constant for small α values. This is because 
the mean is sensitive to outliers, and the mean statistic 
is not sensitive to overscaling the argument of (4). The 
mean’s insensitivity occurs because as PDFs become very 
narrow from the small α values most of the true displace-
ment probabilities go to zero but a few probabilities get 
extremely high and approach one, pulling the mean up. In 
other words, considering the example shown in Fig. 1, the 
median is sensitive to the undesirable nature of the red 
and green curves, whereas the mean is only sensitive to 
the undesirable nature of the green curve and finds the red 
and blue curve equivalently palatable on average.

Before the rest of the results are given, a brief descrip-
tion of how to interpret the graphs is provided. In Figs. 4, 

Fig. 7. This figure shows the value of α that maximizes the median 
probability for the strain-induced displacements as a function of kernel 
length. The data are displayed for several levels of thermal noise. The 
range for the best α decreases as the kernel size increases. For the kernel 
sizes usually used to estimate displacements from compression, the best 
values for α are narrowly spread. 

Fig. 8. The results of likelihood function discrimination for various magnitudes of compressional motion are shown for a 6λ kernel and an SNR of 
20 dB. Strains of (a) 0.01%, (b) 0.1%, (c) 1%, and (d) 10% are shown. The likelihood functions computed using the classical method and an unscaled 
conversion of the normalized cross-correlation are shown, along with the two proposed likelihood functions. The proposed likelihood functions have 
similar behavior to each other when the thermal noise dominates, however, when decorrelation dominates as a noise source, the likelihood function 
dependent on SNRtherm shifts to a higher α. The likelihood function that uses SNRρ does not shift as the dominant noise sources transitions from 
thermal noise to decorrelation noise.
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6, 8, and 10, the dependent axis is the median probability, 
and it is beneficial for the curves to have high median 
probability, which indicates that the posterior distribu-
tion is appropriately concentrated. Additionally, in these 
figures, several graphs are shown; it is also beneficial if 
the peak of the curve for each method occurs at the same 
location on the independent axis. If this is not so, the im-
plication is that α depends on one of the parameters that 
is being measured (or at least a parameter that is not well 
known). In Figs. 5, 7, 9, and 11, the dependent axis is the 
maximum α value. In the ideal case, all of the curves in 
the graphs within these figures overlap exactly.

Fig. 4 shows the bulk motion results comparing the 
methods for computing the likelihood function. The meth-
ods compared are the classic likelihood function, the likeli-
hood function using normalized cross-correlation without 
scaling, and the proposed likelihood function for the two 
methods of computing the SNR. The classic likelihood 
function and the unscaled normalized cross-correlation 
are both constant because the likelihood function perfor-
mance is plotted as a function of scaling. Three different 
levels of thermal noise are considered—10, 30, and 40 dB. 
The 40-dB case is included to show a degenerate case and 
to raise the issue of adequate sampling. The sampling for 
the simulations was 10 GHz, but the concentration of the 
posterior for 40 dB of thermal SNR was such that all the 
probability of the posterior distributions was concentrated 
within the range τtrue ± ε used to evaluate the likelihood 
functions for bulk motion. (This will be shown to be unim-
portant when motion-induced signal decorrelation is pres-
ent.) The most important trend of the data presented in 
Fig. 4 is that for significant ranges of the scaling term α, 
the classic likelihood function and the unscaled normal-
ized cross-correlation likelihood function are less discrimi-
native than the proposed likelihood function.

Although the proposed likelihood function is better, 
one additional important trend is that the likelihood func-
tion using the thermal SNR—which is known exactly from 

the simulations—performs consistently better than the 
SNR derived from ρ. The performance of the SNR derived 
from ρ is not unexpected because it is an estimated value, 
and the variance of ρ is directly related to the value of ρ. 
The exact distribution that ρ follows has been well char-
acterized by Fisher [32] and is not trivial, but a simple 
approximation is σρ

2 ≈ (1 − ρ2)2/N, where N is the num-
ber of independent samples used [33]. This approximation 
of σρ

2 is consistent with the convergence of the perfor-
mance of the likelihood functions calculated using the two 
different SNRs, (5) and (6), as the kernel length increases.

Fig. 5 shows the scaling that produces the peak median 
value, plotted as a function of kernel length. The scaling 
has a strong trend with kernel length, but appears to be 
nearly independent of SNR. (The 40-dB case does not fol-
low the same trend, but this has already been shown to be 
a degenerate case.)

The first set of strain-induced displacement results is 
shown in Figs. 6 and 7. The figures show that there is a 
more significant change in α for changes in thermal noise 
in the presence of compressive motion compared with the 
results of bulk motion. Despite this change, the best α 
values are still generally tightly clustered compared with 
the domain of the graphs in Fig. 6. The plots in Fig. 6 
also show broader peaks. This suggests that the probabili-
ties for strain cases are less sensitive to the specific value 
of α, and the PDFs for strain are probably more diffuse 
when compared with the PDFs obtained for bulk motion 
displacements.

Next, results for constant noise and varying strain are 
shown. The results for computing the likelihood function 
for several strain magnitudes are shown for a kernel length 
of 6λ and an SNR of 20 dB in Fig. 8. Results are plotted 
as a function of strain in Fig. 9 for 4.5, 6, and 12λ. These 
results show the value of α that maximizes the probabil-
ity. The results in Fig. 9 indicate that over traditionally 
measurable levels of strain, the value of α is nearly con-
stant for a given kernel length. The only exception is for 
the 12λ kernel for a strain of 10%. For this case, α is 
significantly higher than the baseline values. This is not 
particularly concerning because this combination of strain 
and kernel length is not typically encountered in elastog-
raphy applications.

The ARFI results of likelihood function evaluation are 
shown next. The results are all reported as the probabil-
ity that the true displacement profile occurred, given the 
data. The first figure, Fig. 10, shows the performance of 
the various methods of calculating the likelihood function 
in the context of ARFI data. The figure shows trends simi-
lar to those for the bulk motion case shown in Fig. 4. For 
the ARFI comparisons shown in Fig. 10, smaller kernel 
lengths are shown that are typical for in vivo ARFI mo-
tion estimation. The figure shows the classic method and 
the direct transformation of normalized cross-correlation 
as well as the two proposed methods. Both of the proposed 
methods are again better over a large range of α scalings, 
but, as with the strain results, the method that relies on 

Fig. 9. This figure shows the values of α that lead to the most discrimina-
tive likelihood functions for different magnitudes of compressive displace-
ments. Results are shown for kernel lengths of 4.5, 6, and 12 λ kernels. 
The dependent axis is displayed on a log scale only to accommodate the 
α value for the 12 λ kernel at 10% strain. 
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the correlation coefficient to calculate the SNR is the best 
method. In some cases, the performance of the likelihood 
function only incorporating thermal noise is similar, but 
the position of this likelihood function is very volatile with 
levels of SNR. The artifact seen in the 40-dB bulk motion 
case is not seen in the ARFI displacements because even 
when the thermal noise is low, there is still a significant 
amount of ARFI motion-induced signal decorrelation.

For the ARFI displacements, the scaling factors (α) 
that produce the peak median values are plotted as a 
function of kernel length and shown in Fig. 11. The model 
line that was created from the bulk motion displacements 

is also in Fig. 11. The trend of the model line exists in the 
ARFI results, but there is an additional scaling term. This 
is shown in the second graph in Fig. 11, which shows the 
ARFI results divided by the line modeled from the bulk 
motion results.

IV. Discussion and Conclusion

An implementable perturbation to the likelihood func-
tion has been demonstrated for several displacement sce-
narios. An implementable likelihood function forms a sig-

Fig. 10. This figure compares different methods of calculating likelihood functions for ARFI displacements. The classic likelihood function, the direct 
transformation of normalized cross-correlation, and the proposed method with specified SNR and data-derived SNR are shown. The median values 
are displayed as the log of the respective median values. Additionally, the y-axis represents the full probability of the entire ARFI displacement 
profile through depth.
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nificant part of the framework necessary to develop biased 
displacement estimates, but it is also useful to have an 
appropriate method for converting possible displacements 
into quantifiable probabilities.6

The derived likelihood function will be useful for any 
implementation of Bayesian speckle tracking. To assist in 
the use of the likelihood function for arbitrary displace-
ment scenarios, the scaling factor α was introduced and 
was shown to be a useful way of modifying the likelihood 
function for different kernel lengths. This avoids the re-
quirement for an infinitely long data record to apply the 
likelihood function appropriately. That being said, the 
likelihood function was also shown to have a reasonably 
shallow peak as a function of α and is not extremely sen-
sitive to the selection of specific α values—implying that 
calculation of the likelihood function should be adequately 
robust. (If better α values are required in the future, it 
may be possible to treat α as a random value and iter-
ate toward an optimal value using Gibbs sampling, for 
example.)

One thing that has not been provided here is an analy-
sis of how the likelihood function can be used to get bet-
ter displacement estimates. The likelihood function can 
be used by itself to obtain displacement estimates, or it 
can be used as part of a regularized estimation scheme to 
incorporate other knowledge of the displacement at each 

location into the final estimate. An initial investigation 
has been performed in the companion paper [28].

The method outlined and validated in this work should 
be compatible with other methods present in the litera-
ture. As an example, companding [6] should be employable 
in conjunction with the likelihood function to increase its 
discrimination.

Another result of the work performed here is that it is 
now possible to express ultrasound displacement estimates 
as PDFs. Expressing displacement estimates as PDFs pro-
vides an additional tool for exploring higher-order speckle 
tracking errors. For example, do correlations exist between 
higher-order moments (higher than the variance) of a giv-
en displacement PDF and the behavior of the estimation 
error?

Finally, the likelihood function has only been applied 
to simulated 1-D displacement fields. However, the utility 
of the likelihood function has been introduced and dem-
onstrated elsewhere for 2-D and 3-D in vivo scenarios [34].
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