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any scaling to emphasize the importance of effective scal-
ing for appropriate concentration of probability around 
the true displacement.

The statistic used to assess likelihood function discrimi-
nation will be the median. The use of the median statistic 
is justified by Fig. 3, which shows an example displace-
ment scenario plotted as a function of the scaling term, α. 
The figure shows that the median probability from 1000 
speckle realizations has a peak as a function of α, and that 
the median is sensitive to underscaling and overscaling of 
the exponential argument in (4). In contrast, the mean 
probability of the same speckle realizations as a function 
of α is nearly constant for small α values. This is because 
the mean is sensitive to outliers, and the mean statistic 
is not sensitive to overscaling the argument of (4). The 
mean’s insensitivity occurs because as PDFs become very 
narrow from the small α values most of the true displace-
ment probabilities go to zero but a few probabilities get 
extremely high and approach one, pulling the mean up. In 
other words, considering the example shown in Fig. 1, the 
median is sensitive to the undesirable nature of the red 
and green curves, whereas the mean is only sensitive to 
the undesirable nature of the green curve and finds the red 
and blue curve equivalently palatable on average.

Before the rest of the results are given, a brief descrip-
tion of how to interpret the graphs is provided. In Figs. 4, 

Fig. 7. This figure shows the value of α that maximizes the median 
probability for the strain-induced displacements as a function of kernel 
length. The data are displayed for several levels of thermal noise. The 
range for the best α decreases as the kernel size increases. For the kernel 
sizes usually used to estimate displacements from compression, the best 
values for α are narrowly spread. 

Fig. 8. The results of likelihood function discrimination for various magnitudes of compressional motion are shown for a 6λ kernel and an SNR of 
20 dB. Strains of (a) 0.01%, (b) 0.1%, (c) 1%, and (d) 10% are shown. The likelihood functions computed using the classical method and an unscaled 
conversion of the normalized cross-correlation are shown, along with the two proposed likelihood functions. The proposed likelihood functions have 
similar behavior to each other when the thermal noise dominates, however, when decorrelation dominates as a noise source, the likelihood function 
dependent on SNRtherm shifts to a higher α. The likelihood function that uses SNRρ does not shift as the dominant noise sources transitions from 
thermal noise to decorrelation noise.
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6, 8, and 10, the dependent axis is the median probability, 
and it is beneficial for the curves to have high median 
probability, which indicates that the posterior distribu-
tion is appropriately concentrated. Additionally, in these 
figures, several graphs are shown; it is also beneficial if 
the peak of the curve for each method occurs at the same 
location on the independent axis. If this is not so, the im-
plication is that α depends on one of the parameters that 
is being measured (or at least a parameter that is not well 
known). In Figs. 5, 7, 9, and 11, the dependent axis is the 
maximum α value. In the ideal case, all of the curves in 
the graphs within these figures overlap exactly.

Fig. 4 shows the bulk motion results comparing the 
methods for computing the likelihood function. The meth-
ods compared are the classic likelihood function, the likeli-
hood function using normalized cross-correlation without 
scaling, and the proposed likelihood function for the two 
methods of computing the SNR. The classic likelihood 
function and the unscaled normalized cross-correlation 
are both constant because the likelihood function perfor-
mance is plotted as a function of scaling. Three different 
levels of thermal noise are considered—10, 30, and 40 dB. 
The 40-dB case is included to show a degenerate case and 
to raise the issue of adequate sampling. The sampling for 
the simulations was 10 GHz, but the concentration of the 
posterior for 40 dB of thermal SNR was such that all the 
probability of the posterior distributions was concentrated 
within the range τtrue ± ε used to evaluate the likelihood 
functions for bulk motion. (This will be shown to be unim-
portant when motion-induced signal decorrelation is pres-
ent.) The most important trend of the data presented in 
Fig. 4 is that for significant ranges of the scaling term α, 
the classic likelihood function and the unscaled normal-
ized cross-correlation likelihood function are less discrimi-
native than the proposed likelihood function.

Although the proposed likelihood function is better, 
one additional important trend is that the likelihood func-
tion using the thermal SNR—which is known exactly from 

the simulations—performs consistently better than the 
SNR derived from ρ. The performance of the SNR derived 
from ρ is not unexpected because it is an estimated value, 
and the variance of ρ is directly related to the value of ρ. 
The exact distribution that ρ follows has been well char-
acterized by Fisher [32] and is not trivial, but a simple 
approximation is σρ

2 ≈ (1 − ρ2)2/N, where N is the num-
ber of independent samples used [33]. This approximation 
of σρ

2 is consistent with the convergence of the perfor-
mance of the likelihood functions calculated using the two 
different SNRs, (5) and (6), as the kernel length increases.

Fig. 5 shows the scaling that produces the peak median 
value, plotted as a function of kernel length. The scaling 
has a strong trend with kernel length, but appears to be 
nearly independent of SNR. (The 40-dB case does not fol-
low the same trend, but this has already been shown to be 
a degenerate case.)

The first set of strain-induced displacement results is 
shown in Figs. 6 and 7. The figures show that there is a 
more significant change in α for changes in thermal noise 
in the presence of compressive motion compared with the 
results of bulk motion. Despite this change, the best α 
values are still generally tightly clustered compared with 
the domain of the graphs in Fig. 6. The plots in Fig. 6 
also show broader peaks. This suggests that the probabili-
ties for strain cases are less sensitive to the specific value 
of α, and the PDFs for strain are probably more diffuse 
when compared with the PDFs obtained for bulk motion 
displacements.

Next, results for constant noise and varying strain are 
shown. The results for computing the likelihood function 
for several strain magnitudes are shown for a kernel length 
of 6λ and an SNR of 20 dB in Fig. 8. Results are plotted 
as a function of strain in Fig. 9 for 4.5, 6, and 12λ. These 
results show the value of α that maximizes the probabil-
ity. The results in Fig. 9 indicate that over traditionally 
measurable levels of strain, the value of α is nearly con-
stant for a given kernel length. The only exception is for 
the 12λ kernel for a strain of 10%. For this case, α is 
significantly higher than the baseline values. This is not 
particularly concerning because this combination of strain 
and kernel length is not typically encountered in elastog-
raphy applications.

The ARFI results of likelihood function evaluation are 
shown next. The results are all reported as the probabil-
ity that the true displacement profile occurred, given the 
data. The first figure, Fig. 10, shows the performance of 
the various methods of calculating the likelihood function 
in the context of ARFI data. The figure shows trends simi-
lar to those for the bulk motion case shown in Fig. 4. For 
the ARFI comparisons shown in Fig. 10, smaller kernel 
lengths are shown that are typical for in vivo ARFI mo-
tion estimation. The figure shows the classic method and 
the direct transformation of normalized cross-correlation 
as well as the two proposed methods. Both of the proposed 
methods are again better over a large range of α scalings, 
but, as with the strain results, the method that relies on 

Fig. 9. This figure shows the values of α that lead to the most discrimina-
tive likelihood functions for different magnitudes of compressive displace-
ments. Results are shown for kernel lengths of 4.5, 6, and 12 λ kernels. 
The dependent axis is displayed on a log scale only to accommodate the 
α value for the 12 λ kernel at 10% strain. 

http://dx.doi.org/10.1109/TUFFC.2013.2545/mm1
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the correlation coefficient to calculate the SNR is the best 
method. In some cases, the performance of the likelihood 
function only incorporating thermal noise is similar, but 
the position of this likelihood function is very volatile with 
levels of SNR. The artifact seen in the 40-dB bulk motion 
case is not seen in the ARFI displacements because even 
when the thermal noise is low, there is still a significant 
amount of ARFI motion-induced signal decorrelation.

For the ARFI displacements, the scaling factors (α) 
that produce the peak median values are plotted as a 
function of kernel length and shown in Fig. 11. The model 
line that was created from the bulk motion displacements 

is also in Fig. 11. The trend of the model line exists in the 
ARFI results, but there is an additional scaling term. This 
is shown in the second graph in Fig. 11, which shows the 
ARFI results divided by the line modeled from the bulk 
motion results.

IV. Discussion and Conclusion

An implementable perturbation to the likelihood func-
tion has been demonstrated for several displacement sce-
narios. An implementable likelihood function forms a sig-

Fig. 10. This figure compares different methods of calculating likelihood functions for ARFI displacements. The classic likelihood function, the direct 
transformation of normalized cross-correlation, and the proposed method with specified SNR and data-derived SNR are shown. The median values 
are displayed as the log of the respective median values. Additionally, the y-axis represents the full probability of the entire ARFI displacement 
profile through depth.



IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 60, no. 1, January 2013142

nificant part of the framework necessary to develop biased 
displacement estimates, but it is also useful to have an 
appropriate method for converting possible displacements 
into quantifiable probabilities.6

The derived likelihood function will be useful for any 
implementation of Bayesian speckle tracking. To assist in 
the use of the likelihood function for arbitrary displace-
ment scenarios, the scaling factor α was introduced and 
was shown to be a useful way of modifying the likelihood 
function for different kernel lengths. This avoids the re-
quirement for an infinitely long data record to apply the 
likelihood function appropriately. That being said, the 
likelihood function was also shown to have a reasonably 
shallow peak as a function of α and is not extremely sen-
sitive to the selection of specific α values—implying that 
calculation of the likelihood function should be adequately 
robust. (If better α values are required in the future, it 
may be possible to treat α as a random value and iter-
ate toward an optimal value using Gibbs sampling, for 
example.)

One thing that has not been provided here is an analy-
sis of how the likelihood function can be used to get bet-
ter displacement estimates. The likelihood function can 
be used by itself to obtain displacement estimates, or it 
can be used as part of a regularized estimation scheme to 
incorporate other knowledge of the displacement at each 

location into the final estimate. An initial investigation 
has been performed in the companion paper [28].

The method outlined and validated in this work should 
be compatible with other methods present in the litera-
ture. As an example, companding [6] should be employable 
in conjunction with the likelihood function to increase its 
discrimination.

Another result of the work performed here is that it is 
now possible to express ultrasound displacement estimates 
as PDFs. Expressing displacement estimates as PDFs pro-
vides an additional tool for exploring higher-order speckle 
tracking errors. For example, do correlations exist between 
higher-order moments (higher than the variance) of a giv-
en displacement PDF and the behavior of the estimation 
error?

Finally, the likelihood function has only been applied 
to simulated 1-D displacement fields. However, the utility 
of the likelihood function has been introduced and dem-
onstrated elsewhere for 2-D and 3-D in vivo scenarios [34].
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