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Abstract

Acoustic clutter produced by off-axis and multipath saatig is known to cause image degradation, and in some casss th
sources may be the prime determinantsnofivo image quality. We have previously shown some success aildgethese sources
of image degradation by modeling the aperture domain siffoai different sources of clutter, and then decomposingtape
domain data using the modeled sources. Our previous modekdmme shortcomings including model mismatch and failure to
recover B-Mode speckle statistics. These shortcomingsddeessed here by developing a better model and by usingexajen
regularization approach appropriate for the model and. dé&apresent results with L1 (lasso), L2 (ridge) and L1/L2 bamed
(elastic-net) regularization methods. We call our new métAperture Domain Model Image REconstruction (ADMIRE).

Our results demonstrate that ADMIRE with L1 regularizatmrweighted towards L1 in the case of elastic-net regulticina
have improved image quality. L1 by itself works well, but @dshal improvements are seen with elastic-net reguléinnaover
the pure L1 constraint. Om vivo example cases, L1 regularization showed mean contrasbiraprents of 4.6 dB and 6.8 dB,
on fundamental and harmonic images, respectively. Elastiaegularizationdq = 0.9) showed mean contrast improvements of
17.8 dB on fundamental images and 11.8 dB on harmonic imafjesalso demonstrate that in uncluttered Field Il simulation
the decluttering algorithm produces the same contrastrasirto-noise ratio and speckle signal-to-noise ratio@snal B-Mode
imaging, demonstrating that ADMIRE preserves typical imégatures.

I. INTRODUCTION

Ultrasound’s low-cost and convenience make it the most lwideed advanced clinical imaging modality in the United
States [1]. Unfortunately, ultrasound’s broad utility ibslits quality in many real clinical instances where mosireg are
subjected to at least some level of image degradation ang fadraltogether [2]-[6]. Often poor image-quality is dttable
to penetration and resolution limitations, but acoustiatter may be the most significant and widespread cause ofeimag
degradation [7].

Acoustic clutter is something of a catch-all term for noffrdiction limited image degradation, which includes nsitih
scattering, off-axis scattering and phase-aberrationdad degradation of the point spread function. A number athous
have been proposed to suppress these sources of degradatialting correcting temporal wavefront distortions ephase-
aberration correction [8]-[10], standard and adaptivedgration schemes [11]-[15], and harmonic imaging [16]HMith
the exception of harmonic imaging, these techniques hasdleohly mixed clinical success.

While most beamforming methods in the literature have fedusn restoring, optimizing or surpassing diffraction tieai
beamforming, suppressing multipath scattering has alsa bgplored. A number of methods exist, but again harmoréging
is the one that is the most clinically impactful [7], [16],71l although, it still does not eliminate all clutter [19]infe reversal
is a classic method for suppressing multipath scatterimgoibint target or a rapidly changing speckle pattern ardaai[20],

[21], but it is harder to apply to attenuating media [22]. fiehare also several new methods that suppress multipatercldne

new method is second-order ultrasound field (SURF) imagimigh takes advantage of nonlinear wave propagation bitjre
manipulating nonlinear propagation in a way that speclfica@rgets the multipath scattering problem [19], [23]H[25URF
imaging is promising, but it may be some time before the resrgshigh-bandwidth transducers and arbitrary transrsitiee
readily available [19]. A second set of new methods are thertape domain coherence based beamformers, which include
short-lag spatial coherence imaging [26]—-[29]. These oadhsuppress off-axis and multipath scattering and haveslated
very well to in vivo scenarios. Their biggest challenge may be that they creatamentally different images compared to
normal B-Mode images, which may hinder clinical adoptiomefture domain coherence methods also eliminate the radio
frequency (RF) signal making them unsuitable for estintgatiirsplacement using conventional high-quality methods.

In order to address the problem of both multipath and of6atutter sources, we recently proposed a new model-based
approach [30]. The primary goal of the approach is to preséme ultrasound channel data (or RF data), while minimizing
acoustic clutter. A secondary goal is to develop a tool tleat characterize the spatial distribution of clutter framvivo
data. The method relies on linearizing the problem of mattipscattering by ignoring multipath propagation and aeréng
multiple scattering as time-delayed wavefronts arrivirapf depths shallow to the normal region of interest. Theahihodel
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Fig. 1: Three examples are shown for the time-domain chadatl and the corresponding aperture domain data after the
STFT has been applied axially. The examples show severasaafs:,, z,, andr, for a region of interest centered about 5
cm. Comparisons are made between the data, the new modehamddt model in each of the bottom graphs.
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Fig. 2: When multipath scattering does occur the wavefrafitaxtend across multiple dynamic receive delay profileBisT
is demonstrated in the graph above with several receivey getziles shown as thin lines, and a wavefront delay profitenfr
modeled multipath scattering shown as a black line.

of this linearization applied the Fresnel approximationtisat the signal sampled by a transducer array could be mbdeasle
a summation of linear frequency modulated sinusoids,

N-1
polast,w) m Yy el ki (1)
n=0
where
kz —xnk
gn = —————, andk, = -
2zp(zp — 2zn) Zf — Zn

and where eaclV is a scattering source at locati¢n,,, z,) encoded by the chirp-rates,, and frequencies,,. z; is the
depth of the signal of interest, and k is the wavenumber. Byguthis model to decompose a signal into its scattering site
and reconstructing only the signals from the region of eggrwe demonstrated image quality improvements. Spdbjfica
the method demonstrated significant improvements in csitbait little change in contrast-to-noise ratio (CNR) oerage.
This seemingly paradoxical result was probably caused béyiawer speckle signal-to-noise ratio (SNR) compared tonabr
B-mode imaging. In order to address these shortcomings eveta open questions from the previous work, we present a
new model and decomposition scheme, which we call Apertunm&in Model Image Reconstruction (ADMIRE).
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Fig. 3: Three examples are shown for different dynamic receiscales. Wheny is negative the dynamic receive foci are
shallower than normal so the wavefront becomes inverted veren~ is positive the curvature from path-length differences
is not entirely removed so some of the original curvatureaies

Il. METHODS
A. Received Wavefront Model

In our previous model we made several approximations sodbhatmodel components were constant amplitude, linear-
frequency-modulated sinusoids. The previous simplificetiare ignored here, and the new model for ADMIRE incorgsrat

« the exact wavefront delay profile,

« the effect of dynamic receive beamforming on multipath sesy

« the impact of the axial short-time Fourier transform (STRindow

« and element directional sensitivity.
The model incorporating these effects can be presentedigalheas

N—-1
ps(x;t,w) = Z A(x; xy, zn,Tn,w)ejkT(m;x"’z"’T"), (2)
n=0
where k is the wavenumber;: is the aperture positiort, and w localize the signal in time and frequeney(a; z, zn, )
is the wavefront delay for a signal arriving from poitt,,, z,) at time 7, and A(z; 2., zn, T, w) is the lateral amplitude
modulation induced by the STFT and the element sensitiity:; ,,, z,, 7,,w) also depends on the signal’'s pulse shape
and 7(x; x,, zn, 7). The new model produces similar predictors as (1) but is mgéo restricted to producing just linear,
frequency-modulated sinusoids. Before preceding withstation of the various components of the model, severahmte
wavefronts are shown in Fig. 1. The figure qualitatively camgs new and old models against Field Il simulated data to
provide additional intuition and motivation for the new nebd
To establish the specifics of (2), we first consider a scaitevavefront’s arrival-time profile. For the typical freease

diffraction case, this is )
TDif (T3 T, 2n, Tn) = E\/(z—xn)z—{-zg—kmo. 3)

Usually, 7,,, would be defined as,, /¢, which models a ballistic wave propagating directly to tegion of interest, scattering,
and then propagating directly back to the array. Howewgr,is more general in our linearized representation of muttipa



scattering. In our representation,, can be any value within the receive duration of the ultrasiosystem, but practically, its
value is limited based on the axial STFT window and the cumeafor a given depth. We find it more convenient to define
Tng = %(2zf — zn) + ™, and then parameterize the model-space using

Modeling the wavefront curvature from a given source lawmats straight forward and consistent with our previous apph.
Here, we also introduce the impact of dynamic receive detayshe modeled wavefronts. In principal, applying dynamic
receive delays is not necessary, but dynamically delaymgwavefronts and modeling this process has at least one clea
benefit and another possible benefit. First, dynamic reaiays flatten the curvature of all wavefronts, includingyefeonts
resulting from multiple scattering. A flatter curvature meaa wider segment of that wavefront falls within a given STFT
window allowing for better estimation resolution. Secodginamically delaying the wavefronts provides an oppotjuto
advantageously modulate the aperture domain signal tolbwtpr preserve the signal of interfest

First, we consider the impact of applying dynamic receiviayieto wavefronts originating from multipath scatterifidghe
problem is that wavefronts arriving from depths besidesitiiended focus have different curvatures than the corredipg
receive delay profiles, and therefore these multiply scadtevavefronts traverse several different dynamic recpiediles, as
illustrated in Fig. 2. To model this effect, the perceivegttieof each part of the sampled wavefront needs to be computed
so that the correct delays can be used in (2). To accomplishwle start with the usual dynamic receive delays across the

aperture and through depth, .
TDR(x;xf,zf):E,/(z—xf)Q—i-zJ%—i-Z?f, 4)

where z is the aperture location an(ky, z¢) are the dynamically updated focal locations. Next, we eglae multipath
wavefront delays and the dynamic receive delays

TDif (T3 Ty 20y Tn) = TDR(T; 25, 21) (5)
and solve forzy. Purely by rearrangement, the result is

do(x)* — (x5 — )
Qdo(.%') ’

do(z) = \/(x — xn)? + 22 + Ty

Finally, the value forz;(x) can be inserted back into (4) to calculate the dynamic reca@lay applied across each multiply
scattered wavefront.

Next, we describe a method for intentionally modulating #iperture domain signal so that the primary region of interes
is not near DC. The approach scales the depth dimension asedltulating the dynamic receive delay profile, which easus
different receive delays than usual to be applied at a giwgthd In this case, (4) is modified to

o (5521, 20) = 1@~ 20+ (L )zg) + LD @

and to extend to the multipath wavefront we again solvezidr:) using (5) to obtain

URRLCIEL N

1+ sgr(W 1 - 42E 20 (@), ®)

zf(x) = (6)

where

do(x)*(1 = 7)?

where~ is the scaling factor for the depth. As defined, negativereates curvatures corresponding to depths shallow to the
usual focus, and the reverse for positiveExamples of the impact for severalvalues on wavefront curvature are shown in
Fig. 3.

The wavefront delays used in (2) are

T(Ia Ty Zn, Tn) = TDij(Ia Ty Zn, Tn)_
zf (@)

Tor(z; 28, 28(2)) — (L +7) pa (9)

The wavefront delay is important for establishing the sigrzhase across the aperture, but it is also important fmuézating
the amplitude modulation4(z), across the aperture. Using the modeled delay and an estwhalie pulse shape the lateral

1This is consistent with concepts in spectral estimationre/fiee Cramer-Rao lower bound for a given frequency estiisatdunction of that frequency [31].
Of note here is that for spectral estimation problems then@reRao bound for the DC estimation variance is incredildgrpln the application considered
here without an additional modulation, the wavefronts fritva region of interest will be nearly DC signals.



amplitude modulation can be calculated as

_ At
cT 2

tet 5t
A%T(x) = / w%T(t - tC)U’gmj (t = 7(z;520, 20, T0)) dt, (10)
t
whereAt is the width of the STFT window,. is the center of the STFT window; 1 is the window used for the STFT and
weny 1S the axial pulse envelope. For many relevant cases @f and we,,, Arr(x) can be calculated analytically, but it
is also possible to calculatérr(x) from sampled realizations af - andw.,,. This second case may be useful for more
exact representations of the pulse shape using empirickbpfilone measurements, or to adaptively estimate the phigee
based on speckle statistics [32]. Here, for simplicity, wstrict ourselves to a rectangular window foyr and a Gaussian
envelope forw.,,. This lateral modulation resulting from STFT windowing dagot describe all of the potential amplitude
variation across the aperture.
We also include the effect of element sensitivity as describy Selfridge et al. and expressed as

sin( W s)i\n(9) )

mw sin(0)

Aes(z) = cos(0) (11)
wheref = t(m—l(””;—jfn) [33]. Incorporating angular sensitivity is most importdot shallow scatterers with high incidence
angles of the received wavefront with transducer elemésabining angular sensitivity with the STFT charactecstjives

the amplitude modulation modeled here,
Ap(x) = App(z)Acs (). (12)

The accuracy of the model was determined using Field Il satmis with the parameters in Table .

B. Model Space
Using our linearized scattering model for ADMIRE, we can g3 the signal received at a specific time as

y=Xp, (13)
wherey is a single frequency of the observed channel data from and®#-T window location constructed as
y = [R{Su (@i mT,wp)} ${Su(xs;mT,w,)}]",
X is the model matrix of predictors constructed from (2),

_ [Rps(@st,0)} T —S{ps(zit,w)} T
Sps(zst.w)} T R{ps(zst,w)}’ |

and s contains the coefficients for the predictorsin & and< denote the real and imaginary parts, respectively. The mode
matrix is formed by sampling the space from which scatteaeesexpected to return. There are many possible approaches t
sampling the model space. Here, we identify a region aheaunef that will be the acceptance zone. Scatterers origigati
from within this zone will be used to reconstruct decluttedata, while scatterers outside this zone are discardeduin
experiments so far it is most efficient to sample the modetespmely within the region of acceptance and sample the model
more coarsely in the rejection zone.

We define the acceptance zone based on the expected rasadfitto model predictor centered in the region of interest.
The lateral resolution is calculated based on the bandvatithe signal originating from the center of the region ofeiest,
i.e. resjar = Az F{|ps(z; xe, 2¢,0)|} pw, WhereF{| - |} sw denotes the lateral bandwidth of the model predictor @ndz..)
denotes the center of the region of interest. The axial uéisol of the region of interest is approximatedras,,,; =~ 2res;q;,
and comes from work on parameter estimation of linear fraguenodulated sinusoids [34]. The lateral and axial regmut
are used to define an ellipsoidal acceptance region,

(”C"‘xr)2+(zn‘zr)2s1, (14)
CITES]at CqTESqxl

wherec; andc, are scale factors selected to modify the size of the acceptayion, and:,. andz,. denote the center of the
acceptance zone.

The sampling of the continuous parameter space of the aitrakfield can have a large outcome on the resulting decompo-
sition. It is computationally advantageous to restrict tluenber of predictors in the modé{, but an insufficiently populated
model inhibits the ability of the model to suppress clutted areserve the signal of interest. For all of the resulte ex have
two different sampling grids depending on whether intemiaeceive modulation is used. For both sampling grids giese”
parametertau, is the same with a spacing 0f0485\ in the acceptance region am423\ outside the acceptance zone.
For the case of normal receive delays=¢ 0) the lateral and axial grid sampling inside the acceptaree 250.06687¢s;,+
and 0.267res, ., respectively, and the sampling outside the acceptance &oh34res;,; and 1.34res,,;, respectively. For




the case of receive modulation with= 0.5 the sampling is finer. In this case the lateral and axial gaichging within the
acceptance region i8.025res;,; and 0.10res,,;, respectively. Outside the acceptance region the grid Bamis 0.57es;4¢
and 0.5resqq1, respectively. For the purposes of image reconstructionxed fgrid is used throughout the image. This has
the advantage of efficiency at the cost of increased decatmgosrror. For some applications not presented here it bay
desirable to incorporate model selection and reguladrdtining into a more robust cross-validation scheme, wisidieyond
the scope of this paper.

C. Decomposition and Regularization

Depending on the specific model-space sampling, the imaggggence and the imaging depth, the ADMIRE model matrix
could contain anywhere from several hundred predictorsvier @ million predictors. This is in contrast to the number of
samples in the data vectayr, which will rarely have more than 256 elements for a 1D arfidye massive difference between
the number of data points and the number of model predictersepts a challenge. Ideally, estimatihigould be accomplished
by minimizing the squared errord— (XTX)~1XTy, but this is ill-posed. To address this problem, additioo@hstraints
must be added in the form of regularization terms. Regudéion schemes constraining the solution with L1 or L2 normes a
typical. L1 is useful because it promotes coefficient sparbut the final solution will have fewer non-zero predistdhan
observations, and the predictors will be nearly (if not tgjauncorrelated. This property of L1 regularized modéiiiig may
be problematic for somim vivo ultrasound aperture-domain data sets because in manyitasksequire multiple correlated
model-predictors to reconstruct all scattering sourcessid®s L1, the other typical scheme is L2 regularized moteidi
L2 is attractive because it allows for solutions with caatel model predictors, but while correlated predictors wmeful,

L2 performs coefficient shrinkage (not selection), so an bstrained solution may not have any coefficients equal to.ze
Practically, this means that when using an L2 constraintdfa originating from inside an anechoic cyst (i.e. no etgubc
scattering from within the cyst), the model fit will almostalys predict that there is scattering originating from tegion of
interest.

L1 and L2 regularization both have shortcomings for the dgmasition problem posed here. These shortcomings will
be demonstrated empirically in the results. To overcomseh&e use elastic-net regularization to perform the ADMIRE
decomposition [35]. Elastic-net regularization solves thllowing optimization problem,

B= argﬁmin(lly — XBIIP + MallBllr + (1 = a)18115/2)), (15)

where||5]|1 = 27]:[:0 |8, is the L1 term,|| 8|2 = \/Z,J:[:o |8, ]2 is the L2 term,« is between O and 1 and determines the

relative weight between L1 and L2, ands the total regularization parameter. Elastic-net regzadion is attractive because it
allows for correlated model predictors to be present siamalously due to L2, but it also allows for non-zero model joteds
due to the L1 term. These regularization schemes tendsrmdinte related sets of correlated model components as &Glus
which has been referred to as group selection. Elasticewmilarization becomes an L1 problemaif=1 and L2 if « = 0.
The elastic-net and the limiting L1 and L2 regularizationlgems are solved using the efficient software package dliB6¢

In order to appropriately compare models with differenand A values it is useful to know the degrees of freedom for a
given model. The general degrees of freedom for an elasticegelarized regression solution is

df(\) = TrXa(XEX4+M)"1XT] (16)
P-1

where X 4 is a reduced model composed of only predictors with non-zeefficient estimates and,, values are singular
values of the reduced model [37]. The singular value decaitipa was performed iteratively using an efficient memory
approach to accommodate the potential for large model ocestii38].

D. Signal Reconstruction

Once the signal has been spatially decomposed using thelnioeldinal step in ADMIRE is to reconstruct a clean signal.
This is accomplished by identifying model predictors witlihe region of interest specified by (14), which we denot&as
The signal from the region of interest is reconstructed as

yror = X505 (17)

The clutter suppressed signals are converted back to tomgith channel data using an inverse short-time Fouriestoam
(ISTFT).



E. Short-Time Fourier Transform
The STFT used here is implemented as

Si(mT, wy) = i s(Hwpp(mT — 1)e 3wt (18)

l=—o00

whereT denotes the time sampling period of the STkilsr(l) is the sliding window that selects the short-time segments,
andw, are the discrete frequencies, typically distribute®as/N for k = [0,...N — 1]. To make the connection back to the
model clear,S;(mT,w,) would be the STFT for a single channel of the aperture, whaoh €hannel is indexed by and
this index corresponds t@ in p,(z;t,w).

An ISTFT is used to reconstruct the time-domain signal afiermodel decomposition and aperture domain signal recon-
struction. The inverse transformation back into the oagjilomain is accomplished using the least-squares ISTFarides
by Yang [39], which is

wpr(mT —1) S Si(mT,w,)elwr!

Wp=—00

Z?i_oo wFT(mT — 1)2

(19)

si(n) =

F. Computational Complexity

Signal decomposition using elastic net regularizationdasmputational order ab(m? + sm?) wheres is the number of
predictors in the model matrix¥, andm is the number of steps in the L1 portion of the model-fit. [33he computational
complexity matches the complexity for a single ordinarystesquares fit.)

G. Multipath simulations for regularization tuning

The ADMIRE model fit described by (15) requires two differeagularization parameters to be empirically determined,
and A. These parameters are the total regularization weight(d the balance between L1 and L&®).(The tuning problem
here is slightly different from conventional tuning proimg because for imaging applications we are most interestehei
error from only part of our signal, which is the signal retagfrom the region of interest. That is, after solving thastic-net
regularized optimization problem in (15), we obtain a sehaif-zero predictorX 4, and of these predictors, some additionally
reduced sefXz will represent scatterers within the region of interest tuél form the reconstructed signal. For imaging, the
primary goal is to minimize the error of the signal of intaredile maximizing suppression of energy originating odéspf
the acceptance zone. The error of the signal of interestdsrited as,

errror = |lyror — XsBsl%, (20)

whereyror is the wavefront formed by scattering only from the regionndérest, andbs are the coefficients corresponding to
the predictors within the ROI. In order to estimate the retauttion errorerrgor, it is necessary to know the true wavefront
of interest. The true wavefront is not knowable when usimgivo data, and using fully non-linear simulations can also
make knowing the true signal of interest difficult. Therefofor model validation, basic image evaluation and reggagion
tuning we propose a pseudo-nonlinear approach to simglatiltipath scattering induced signal corruption using lthear
simulation package Field 1l [40], [41]. Field Il already natlly simulates off-axis scattering and scattering frorspacified
region of interest, which means that once we introduce otenesion, Field Il can simulate all the degradation mechasisf
interest here.

To add our multipath Field 1l extension, we simulate multipacattering by simulating channel data for scattereiisiagr
from a particular depth without any receive beamforming.tiiém shift the data to a later time by zero-padding and intating
the data in the time-domain to a specific time of interest.€dthe multipath signals are simulated and delayed they atedad
to the signal of interest. The channel data from multipatittecing can be scaled to simulate various levels of clutter

This approach allows for simulations with both off-axis andltipath clutter sources that are known exactly. For eXamp
clutter from many different regions can be simulated, arehtthe amplitude of all of these clutter signals can be namaal
relative to the signal of interest to create clutter with wnopower. Additionally, clutter from discrete scattere@nche
simulated, or clutter from diffuse scatterer sites can bedu® create a more complex and possibly more realisticeclutt
signal. Currently, each lateral line location is treatedasately, which means that the lateral correlation doesnmotic the
expected behavior. In principle this can be accounted farwe do not address this at this point because our algorishnot
affected by lateral correlation.

The motivation for this pseudo-nonlinear simulation agmto was to easily calculaterro;, but the simulation scheme
also allows for a simple contrast metric and provides mosgltt into regularization tuning. The contrast metric ifcukated
from clutter data with and without a signal of interest. Tbisrelates to estimating the contrast of an anechoic cyst.sIgnal
that contains both clutter and a signal of interest repitssie background feature, and the signal with only clutprasents



TABLE [: Field Il Simulation Parameters

Parameter Value
Center Frequency (¥ 3 MHz
Bandwidth 60%
Lateral Pitch 0.257 mm
Elevation Width 2 mm

Samp. Freq. (Simulation) 640 MHz
Samp. Freq. (Downsampled) 40 MHz

Transmit Focal Depth 3cm
Transmit f-number 1.8
Receive f-number 2
Lesion Radius 2 mm
Lesion Center Depth 3cm

TABLE II: Decomposition Parameters

Parameter Value
STFT Window Length B
STFT Padded Window Length 2 Window Length
STFT Window Type Rectangular
STFT Window Overlap 90%
Decomposed Bandwidth 120%

C] 6

Ca 2

~y variable

« variable

A variable
Sampling Grid variable

an anechoic lesion feature. The metric is calculated using

Creg = 20log10 whH (XBBB)cIutter only simulation e

WH (XBBB)signal and clutter simulation

where w is a beamforming vector that corrects for intentionadulation before summing anl is the complex transpose.
This metric provides insight into how well the signal of irgst’'s power is preserved compared to how well the power @f th
clutter is suppressed.

H. Field Il Contrast Simulations

In addition to using Field Il to help tune the regularizatiparameters, Field Il is also used to evaluate ADMIRE’s
performance on linear simulations of contrast phantoms. Mbtivation is to determine how well the decomposition &athm
preserves contrast and contrast-to-noise ratio (CNR) irluttiered data. This is important because in our previousieho
and decomposition scheme CNR was reduced in about half afidtee however, because most of the previous analysis was
performed onin vivo data, the exact cause of the CNR decrease was impossibledonilge because decreases in CNR
could be due to increased structure like blood vessels expwsthe background region. To address this, a number ofl Fiel
II simulation experiments were conducted using the parareeh Table |. Contrast phantoms were simulated with lesion
contrasts of totally anechoic, -20 dB, -10 dB, -5 dB, 5 dB, B)ahd 20 dB. Each contrast level was simulated with twelve
independent speckle realizations. For each data set weuneelathe contrast as,

C = —20loguo (‘”7") , (22)
/Lbackground
the CNR as
CNR = 2010910 |:ubackground - ,ulesion| ’ (23)

2 2
\/Ubackground + Olesion



and the speckle SNR as
SNRspeckle = ,Ufbackground7 (24)
Obackground
wherey ando? denote the indicated mean and variance , respectivelyeoéiiieloped but uncompressed regions of the image
data.

Field Il was also used to simulate cluttered contrast phastdn this case anechoic lesions were simulated with signal
clutter ratios of 0 dB, 10 dB and 20 dB. The clutter that waseadtb the anechoic lesion simulations was made using the
multipath scattering approach described earlier. Appnaxély 8 diffuse clutter sites were added to the signal e@e2p mm.
The clutter sites could originate from anywhere shallowht® tegion where they would be added to the linear simulatimh a
up to 1 cm on either side of the transmit beam’s axis. Eaclushffclutter site contained 25 scatterers.

[. In Vivo Examples

We evaluated ADMIRE on threpn vivo] data sets acquired with a Siemens S2000 and 4C-1 curvilereay (Siemens
Healthcare, Ultrasound Business Unit, Mountain View, CA)o of the data cases were acquired at 4 MHz, and the third
was a harmonic pulse inversion sequence with a 1.8 MHz trarfsagquency and a 3.6 MHz center frequency on receive.
ADMIRE was applied to the data as described. The model sagparameters for the region of interest wér&67res;,,
0.668res,,;, and0.0485\ for the lateral, axial and phase dimensions, respectigalyside the region of interest the sampling
was 3.35res;4:, 3.351es,,; and0.2423\ for the lateral axial and phase dimensions, respectivellycbmparison the data sets
were beamformed with and without hamming apodization orivec Apodization was applied after ADMIRE.

IIl. RESULTS
A. Model Error and Clutter Correlation Patterns

Depth (cm)
Depth (cm)

-1 -05 0 0.5 1 -1 -05 0 0.5 1 -1 -05 0 0.5 1
Lateral Position (cm) Lateral Position (cm) Lateral Position (cm)
(a) Old Model (b) New Model~=0 (c) New Model~=0.5

Fig. 4: Model error power is shown for the old model (a), thegmsed model without additional modulation (b), and the new
model with an additional modulation correspondingyte- 0.5 (c). The new model has distinctly lower model error compared
to the old model. The new model has low error for both casesthaucase of the intentional receive modulation has skghtl
lower error.

Model errors are shown in Fig. 4. The figure compares the medel for our previous model and two realizations of the
current model. The region of interest is at 5 cm for the rassiiown in the figure. The results show that the error for the ne
model is similar regardless of the modulation, but the matiloth does allow the region of interest to be decomposed théh
lowest error predictors, and it increases the size of thsnegith error less than -20 dB. The model error for all the misd
becomes high in the very near-field, which may be related eopeerformance of Field 1l in the near-field.
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B. Example of a Simulated Cluttered Wavefront

Depth (cm)

-1 -0.5 0 0.5 1
Aperture Position (cm)

(a) Normal Field Il

3.05
€
o
E=
2 3.1
[a)

3.15

-1 -0.5 0 0.5 1
Aperture Position (cm)
(b) Field II with Simulated Clutter

3
o
<
a
[
[a}

-1 -0.5 0 0.5 1
Aperture Position (cm)

(c) In Vivo Data

Fig. 5: An example of the multipath Field Il simulations iso8m. In (a) a normal Field Il simulation is shown. In (b) therea
Field Il simulation corrupted by Field Il simulated multipascattering is shown. In (c) an vivo example featuring several
distinct wavefronts is shown. The Field Il simulation wittmsilated multipath and off-axis clutter features some kirties
to thein vivo data that are not present in the usual Field Il simulation. &@mple, in theén vivo and cluttered simulation
there are apparent sharp discontinuities in the wavefiaattdare not apparent in the first Field 1l simulation.

We show an example of simulated cluttered data using theoapprdescribed in the methods in Fig. 5. The figure shows
an uncluttered Field Il simulation and the same Field Il datian cluttered with simulated multipath and off-axis #eeng.
The cluttered simulation contains qualitative featuresilair to thein vivo data, which includes sharp discontinuities across the
aperture and apparent suppression of the wavefront in segiens. From visual inspection of thie vivo data there is likely
also sound-speed variation (i.e. phase-aberration)smdrich is not currently included in the simulation apptoatroduced
here.

C. Regularization Parameters

The results of varyinge and A from (15) are shown in Fig. 6. These results demonstrateraleweportant ideas about the
ADMIRE model-fit, and the advantages of incorporating arstetanet scheme instead of solely L& & 1) or L2 (o = 0)
regularization. Figs. 6a and 6¢ show the decrease in thesifytlal error as a function of increasing degrees of freeddm.
this case plotting the independent axis using degrees efléma instead of lambda more readily enables comparisoneleatw
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No Additional Receive Modulation, (y = 0) Additional Receive Modulation (y = 0.5)
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Fig. 6: Several different errors are shown as a function afreles of freedom for several values @fbetween L1 (lasso
regression) and L2 (ridge regression) regularized motkelfigs. 6a and 6¢ imply that L1 is the best scheme for minngiz
the error of the complete aperture domain signal; howevigs. Bb and 6d demonstrate that L2 produces the lowest error
for the wavefront returning from the region of interest. $beesults are mitigated by the results in Figs. 6e, 6g, 6fGnd
which demonstrate that am value between 0 and 1 performs better at suppressing signtdgle the region of interest and
adequately reconstructing the wavefront originating frihi@ region of interest.

different values ofa, which are each optimized with different values.) Displaying the data against degrees of freedom
initially suggests that L1 produces the best fit with the $esalerror for small degrees of freedom. This result is ugual
desirable; however, in this case L1 does not always produedoivest error of the wavefront of interest, which is shown i
Figs. 6b and 6d. We also show that L1 does not produce the iagsbvement in contrast, which is shown in Figs. 6f and 6h.
The end result is that while L1 results in the best decomijposdf the cluttered signal, L1 does not lead to the best dieckd
image.

For the task of reconstructing the wavefront of interest B# achieve the lowest mean square error with the fewest eiegre
of freedom. However, while L2 reconstructs the signal shap#; L2 by itself fails to effectively reject sources of dter
originating outside the region of interest as demonstratdeigs. 6e, 6g, 6f and 6h.

Figs. 6e, 6g show the amount of energy in the signal of intesbd®n the true signal is composed only of clutter sources
(lower is better). This represents the scenario of a trugchnic cyst. This is further emphasized in Figs. 6f and 6iwatgp
the image contrast proxy, (21).

D. Image Quality

Example lesions of the uncluttered linear contrast sinutat are shown in Fig. 7. These results show good qualitative
agreement without clutter. The summary statistics for thetrast simulations are displayed in Fig. 8. These resulispare
normal B-Mode versus B-Mode images formed from severakhffit sets of regularization parameters. The contrastiaiion
results are summarized using contrast, CNR and speckle $h&Rprimary result is that ADMIRE preserves normal B-Mode
imaging metrics when clutter is not present, and in a few £a#8BMIRE does better, such as with the anechoic contrast
simulation. This is important because it demonstrates ARMIRE does not degrade or otherwise corrupt high-quality B
Mode data.

Example lesions of cluttered anechoic contrast simulatiare shown in Fig. 9. These results provide an example of how
the Field Il multipath clutter image degradation looks farieus signal to clutter levels. The summary statistics ij EO
demonstrate that the ADMIRE images largely have better enamgptrics. The change in CNR is modest, but this small
improvement in CNR may be correlated to the relatively highiance inside the lesion even after decluttering.

In order to demonstrate that the simulation results tramstain vivo data three examples are shown in Fig. 11 with contrast
and CNR metrics compiled in Table Ill. Results are shown fevesal sets of regularization parameters. For each set of
parameters the contrast is clearly better compared to igeaal data, but in some cases the CNR decreases. Howesarl ba
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Normal

Decluttered

Anechoic -20dB -10dB -5dB 5dB 10 dB 20dB

Fig. 7: 4 mm lesions are visualized using a 3 MHz F/2 imaginstesy. The contrast of the simulated phantoms goes from
completely anechoic to +20 dB. For all cases there is littlangje between the decluttered and normal B-Mode data. The fu
summary of all the simulations is shown in Fig. 8, but the lesuthat the decluttering algorithm does not produce insage

with worse image metrics in the absence of clutter.

TABLE llI: In vivo Image Metrics

Parameters Cont.(dB) CNR(dB)
rect. Hamm. rect. Hamm.
Case #1 (Fundamental)
Normal B-Mode 12.4 13.1 0.76 0.49
a=1,v=0 17.6 19.9 0.17 0.30
a=09,~v=0 209 23.6 0.50 0.61
a=09,v=05 372 412 1.38 0.64
Case #2 (Fundamental)
Normal B-Mode 13.9 14.3 1.28 1.70
a=1,v=0 17.8 18.3 1.40 1.98
a=09,~v=0 185 19.1 1.48 2.10
a=09,v=05 247 251 206 2.30
Case #3 (Harmonic)
Normal B-Mode 12.2 12.6 -1.15 -0.95
a=1,v=0 19.0 19.2 -0.47 -0.42
a=09,~v=0 19.8 20.0 -0.35 -0.29
a=09,v=05 240 247 0.05 0.10

on the previous CNR results from Field Il simulations andugisinspection of thén vivo example cases shown in Fig. 11 it
is reasonable to attribute the decrease in CNR to additistnatture introduced in the background region used to takeu
the image metrics. Similar levels of improvement are entena@ad when ADMIRE is applied to fundamental or harmonic data
We also report the full run time for each of tlire vivo cases usingr = 0.9 and~ = 0.5 and operating on a single core of
an Intel Core i7-4790 3.60GHz processor (Intel Corporatttenta Clara, CA). The total serial run times for the fundatale
cases were 46,932s and 46,540s. The harmonic run time waé27,

IV. DISCUSSION

We have presented a new model and decomposition approadhdaultrasound clutter problem, which we refer to as
ADMIRE. ADMIRE solves many of the open questions from ourvives method. These include preservation of image-
quality and decomposition issues. One significant quedtiom before was how many model components to include in the
final decomposition. This is now a function of the regulaticia constraints and can be tuned to maximize image quatity.
should be noted that some of the image quality improvemestsedated to better STFT and ISTFT parameters compared to
those coupled to our previous algorithm, and therefore ¢lverold model and decomposition scheme perform better than i
the original implementation [30].

In order to support ADMIRE a pseudo non-linear modificationRield Il was introduced. We presented a qualitative
demonstration of this approach for generating realistittef, but the ultimate goal was to develop a useful tool foririg
the regularization parameters. To this end, the uniqueicgijan of Field Il to generate multipath scattering wascassful at
generating regularization parameters that translatedesstully to both fundamental and harmoiricvivo data.
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Fig. 8: The results of 12 speckle realizations are shown aplbts for several levels of lesion contrast and CNR. Result
are also shown for speckle SNR. Results are shown for normdb&e, and the new and old models. In these results the
shortcomings of the old model are clearly evident in the C& speckle SNR data, but in contrast the new model does not
have worse CNR or speckle SNR than normal B-Mode imagingoimesinstances the CNR may be slightly better compared
to B-Mode imaging.
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o i :

S y{C I i
S -20dB -10dB 0dB 10dB 20dB
Signal to Clutter Level

Fig. 9: 4 mm lesions are visualized using a 3MHz F/2 imaginsteay. The contrast of the simulated phantoms goes from
completely anechoic to +20 dB. For all cases there is littlange between the decluttered and normal B-Mode data. The fu
summary of all the simulations is shown in Fig. 10, but theiites that ADMIRE does not produce images with worse image
metrics in the absence of clutter.

In our implementation of the model we assumed that a Gaussiaalope was a reasonable representation of the pulse
shape. This assumption was not rigorously tested here, umlitative inspection of thén vivo data does not reveal gross
changes in the speckle pattern or the resolution betweanai@nd decluttered B-Mode images. Also as mentioned pusiyio
our algorithm is not dependent on the Gaussian pulse appedian, and if necessary future algorithms can implementemo
sophisticated approaches to better account for the pubggesh

ADMIRE's biggest drawback is run time. The reported run tinfier the example cases are a few hours per frame, which is
the serial run time for a Matlab implementation. The aldurititself is easily parallelized, but even with a massivedygtlel
graphical processing unit (GPU) based implementationiisld likely still require several seconds per frame. Mayfarward
it will be important to consider computational or algorititnmodifications that can reduce processing time withoutigiag
the demonstrated improvements.

While the improvements realized in the vivo examples shown in Figs. 11 and 12 are compelling, the redalueter
could lead viewers to inappropriately put diagnostic ensphan clutter that is not eliminated. It is important to ralthat
the current implementation is only designed to act on rexation and off-axis scattering distributed along the laarad
lateral dimensions. Image degradation from other souiikesdiffraction limitations, phase aberration or clutteorh out of
the imaging plane are not addressed here. These mecharfistagradation could be integrated into ADMIRE in the future.

Finally, it is important to mention that although we are daposing the received signal into a specific set of scatterers
there are multiple distributions of scatterers that came@e any given wavefront. The specific scatterers that @nich the
final model-fit are a function of the model space sampling &edchoice of regularization parameters. Based on this, we do
not assume that there is any connection between the norceefficients from the model fit and the actual scatterers én th
imaged media. We do assume that the collection of scatteiighé a given region considered as a whole are represeatati
of the actual wavefront returning from a given region ofdiss

V. CONCLUSIONS

The problem of acoustic clutter is unresolved, and is séifiponsible for failed exams in many patients. To resolve thi
issue we proposed a new model-based approach, ADMIRE. Tipreagh declutters and preserves the RF-channel data, which
means it should be able to function in conjunction with otblassic ultrasound algorithms. Our results show that ADEIR
preserves B-mode image quality and acts as an all-passiiten clutter levels are minimal; however, as clutter leuaisease
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Fig. 10: The results of cluttered anechoic lesion simufetiare shown as boxplots for several levels of signal-ttteruatio.
Results are shown for several different sets of regulaomgtarameters. The results mostly show that the ADMIRE iesag
are better, but with very high or very low levels of signalelatter ratio the improvement is not substantial. The datg
improvement are seen from the images formed using 0.9 and~ = 0.5

ADMIRE effectively suppresses clutter energy, restorimgage quality. Finally, it is worth noting that the final outpsi still
a B-Mode image, which is consistent with the training of eatrhealthcare workers.
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(k) Mask Regions (I) Harmonic B-Mode Ma=1,~v=0 MNa=09~v=0 (©a=09,v=05

Fig. 11: Threen vivo examples are shown to demonstrate that ADMIRE translatestto fundamental and harmonic clinical
data. The results are qualitatively promising, and quatite image metrics presented in Table Il support the tpidle
improvements. Hypoechoic regions of the image presumedetodssels are indicated with ‘V’, and the regions used to
calculate image metrics are outlined and denoted with arofL'B’ indicating lesion or background, respectively. Intho
cases image improvements in the large structures are bighe first example, there is evidence that previously uralizable
vessels (upper left corner) become visible after decontipasi
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(e) Harmonic B-Mode fa=0.9,v=05

Fig. 12: The effect of applying a hamming apodization windmwreceive is shown on the fundamental and harmonic B-Mode
images and the corresponding data after ADMIRE with ¢he= 0.9 andy = 0.5 case. Then vivo examples show that
apodization only results in modest improvements compare®IMIRE. The matched contrast and CNR results are shown in

Table 1l
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