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Abstract

Acoustic clutter produced by off-axis and multipath scattering is known to cause image degradation, and in some cases these
sources may be the prime determinants ofin vivo image quality. We have previously shown some success addressing these sources
of image degradation by modeling the aperture domain signalfrom different sources of clutter, and then decomposing aperture
domain data using the modeled sources. Our previous model had some shortcomings including model mismatch and failure to
recover B-Mode speckle statistics. These shortcomings areaddressed here by developing a better model and by using a general
regularization approach appropriate for the model and data. We present results with L1 (lasso), L2 (ridge) and L1/L2 combined
(elastic-net) regularization methods. We call our new method Aperture Domain Model Image REconstruction (ADMIRE).

Our results demonstrate that ADMIRE with L1 regularizationor weighted towards L1 in the case of elastic-net regularization
have improved image quality. L1 by itself works well, but additional improvements are seen with elastic-net regularization over
the pure L1 constraint. Onin vivo example cases, L1 regularization showed mean contrast improvements of 4.6 dB and 6.8 dB,
on fundamental and harmonic images, respectively. Elasticnet regularization (α = 0.9) showed mean contrast improvements of
17.8 dB on fundamental images and 11.8 dB on harmonic images.We also demonstrate that in uncluttered Field II simulations
the decluttering algorithm produces the same contrast, contrast-to-noise ratio and speckle signal-to-noise ratio asnormal B-Mode
imaging, demonstrating that ADMIRE preserves typical image features.

I. I NTRODUCTION

Ultrasound’s low-cost and convenience make it the most widely used advanced clinical imaging modality in the United
States [1]. Unfortunately, ultrasound’s broad utility belies its quality in many real clinical instances where most exams are
subjected to at least some level of image degradation and many fail altogether [2]–[6]. Often poor image-quality is attributable
to penetration and resolution limitations, but acoustic clutter may be the most significant and widespread cause of image
degradation [7].

Acoustic clutter is something of a catch-all term for non-diffraction limited image degradation, which includes multipath
scattering, off-axis scattering and phase-aberration induced degradation of the point spread function. A number of methods
have been proposed to suppress these sources of degradationincluding correcting temporal wavefront distortions e.g.phase-
aberration correction [8]–[10], standard and adaptive apodization schemes [11]–[15], and harmonic imaging [16]–[18]. With
the exception of harmonic imaging, these techniques have had only mixed clinical success.

While most beamforming methods in the literature have focused on restoring, optimizing or surpassing diffraction limited
beamforming, suppressing multipath scattering has also been explored. A number of methods exist, but again harmonic imaging
is the one that is the most clinically impactful [7], [16], [17]; although, it still does not eliminate all clutter [19]. Time reversal
is a classic method for suppressing multipath scattering ifa point target or a rapidly changing speckle pattern are available [20],
[21], but it is harder to apply to attenuating media [22]. There are also several new methods that suppress multipath clutter. One
new method is second-order ultrasound field (SURF) imaging,which takes advantage of nonlinear wave propagation by directly
manipulating nonlinear propagation in a way that specifically targets the multipath scattering problem [19], [23]–[25]. SURF
imaging is promising, but it may be some time before the necessary high-bandwidth transducers and arbitrary transmitters are
readily available [19]. A second set of new methods are the aperture domain coherence based beamformers, which include
short-lag spatial coherence imaging [26]–[29]. These methods suppress off-axis and multipath scattering and have translated
very well to in vivo scenarios. Their biggest challenge may be that they create fundamentally different images compared to
normal B-Mode images, which may hinder clinical adoption. Aperture domain coherence methods also eliminate the radio
frequency (RF) signal making them unsuitable for estimating displacement using conventional high-quality methods.

In order to address the problem of both multipath and off-axis clutter sources, we recently proposed a new model-based
approach [30]. The primary goal of the approach is to preserve the ultrasound channel data (or RF data), while minimizing
acoustic clutter. A secondary goal is to develop a tool that can characterize the spatial distribution of clutter fromin vivo
data. The method relies on linearizing the problem of multipath scattering by ignoring multipath propagation and considering
multiple scattering as time-delayed wavefronts arriving from depths shallow to the normal region of interest. The initial model
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Fig. 1: Three examples are shown for the time-domain channeldata and the corresponding aperture domain data after the
STFT has been applied axially. The examples show several cases ofxn, zn, andτn for a region of interest centered about 5
cm. Comparisons are made between the data, the new model and the old model in each of the bottom graphs.
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Fig. 2: When multipath scattering does occur the wavefront will extend across multiple dynamic receive delay profiles. This
is demonstrated in the graph above with several receive delay profiles shown as thin lines, and a wavefront delay profile from
modeled multipath scattering shown as a black line.

of this linearization applied the Fresnel approximation sothat the signal sampled by a transducer array could be modeled as
a summation of linear frequency modulated sinusoids,

ps(x; t, ω) ≈

N−1
∑

n=0

Ane
jgnx2+jknx+jφn (1)

where
gn =

kzn
2zf(zf − zn)

, andkn =
−xnk

zf − zn
,

and where eachN is a scattering source at location(xn, zn) encoded by the chirp-rates,gn, and frequencies,kn. zf is the
depth of the signal of interest, and k is the wavenumber. By using this model to decompose a signal into its scattering sites
and reconstructing only the signals from the region of interest, we demonstrated image quality improvements. Specifically,
the method demonstrated significant improvements in contrast, but little change in contrast-to-noise ratio (CNR) on average.
This seemingly paradoxical result was probably caused by the lower speckle signal-to-noise ratio (SNR) compared to normal
B-mode imaging. In order to address these shortcomings and several open questions from the previous work, we present a
new model and decomposition scheme, which we call Aperture Domain Model Image Reconstruction (ADMIRE).
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Fig. 3: Three examples are shown for different dynamic receive γ scales. Whenγ is negative the dynamic receive foci are
shallower than normal so the wavefront becomes inverted, and whenγ is positive the curvature from path-length differences
is not entirely removed so some of the original curvature remains.

II. M ETHODS

A. Received Wavefront Model

In our previous model we made several approximations so thatour model components were constant amplitude, linear-
frequency-modulated sinusoids. The previous simplifications are ignored here, and the new model for ADMIRE incorporates

• the exact wavefront delay profile,
• the effect of dynamic receive beamforming on multipath sources,
• the impact of the axial short-time Fourier transform (STFT)window
• and element directional sensitivity.

The model incorporating these effects can be presented generically as

ps(x; t, ω) =

N−1
∑

n=0

A(x;xn, zn, τn, ω)e
jkτ(x;xn,zn,τn), (2)

wherek is the wavenumber,x is the aperture position,t and ω localize the signal in time and frequency,τ(x;xn, zn, τn)
is the wavefront delay for a signal arriving from point(xn, zn) at time τn and A(x;xn, zn, τn, ω) is the lateral amplitude
modulation induced by the STFT and the element sensitivity.A(x;xn, zn, τn, ω) also depends on the signal’s pulse shape
and τ(x;xn, zn, τn). The new model produces similar predictors as (1) but is no longer restricted to producing just linear,
frequency-modulated sinusoids. Before preceding with a description of the various components of the model, several example
wavefronts are shown in Fig. 1. The figure qualitatively compares new and old models against Field II simulated data to
provide additional intuition and motivation for the new model.

To establish the specifics of (2), we first consider a scattered wavefront’s arrival-time profile. For the typical free-space
diffraction case, this is

τDiff (x;xn, zn, τn) =
1

c

√

(x− xn)2 + z2n + τn0
. (3)

Usually,τn0
would be defined aszn/c, which models a ballistic wave propagating directly to the region of interest, scattering,

and then propagating directly back to the array. However,τn0
is more general in our linearized representation of multipath
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scattering. In our representation,τn0
can be any value within the receive duration of the ultrasound system, but practically, its

value is limited based on the axial STFT window and the curvature for a given depth. We find it more convenient to define
τn0

= 1
c
(2zf − zn) + τn, and then parameterize the model-space usingτn.

Modeling the wavefront curvature from a given source location is straight forward and consistent with our previous approach.
Here, we also introduce the impact of dynamic receive delayson the modeled wavefronts. In principal, applying dynamic
receive delays is not necessary, but dynamically delaying the wavefronts and modeling this process has at least one clear
benefit and another possible benefit. First, dynamic receivedelays flatten the curvature of all wavefronts, including wavefronts
resulting from multiple scattering. A flatter curvature means a wider segment of that wavefront falls within a given STFT
window allowing for better estimation resolution. Second,dynamically delaying the wavefronts provides an opportunity to
advantageously modulate the aperture domain signal to helpbetter preserve the signal of interest1.

First, we consider the impact of applying dynamic receive delays to wavefronts originating from multipath scattering.The
problem is that wavefronts arriving from depths besides theintended focus have different curvatures than the corresponding
receive delay profiles, and therefore these multiply scattered wavefronts traverse several different dynamic receiveprofiles, as
illustrated in Fig. 2. To model this effect, the perceived depth of each part of the sampled wavefront needs to be computed
so that the correct delays can be used in (2). To accomplish this, we start with the usual dynamic receive delays across the
aperture and through depth,

τDR(x;xf , zf) =
1

c

√

(x− xf )2 + z2f +
zf
c
, (4)

wherex is the aperture location and(xf , zf) are the dynamically updated focal locations. Next, we equate the multipath
wavefront delays and the dynamic receive delays

τDiff (x;xn, zn, τn) = τDR(x;xf , zf ) (5)

and solve forzf . Purely by rearrangement, the result is

zf (x) =
d0(x)

2 − (xf − x)2

2d0(x)
, (6)

where
d0(x) =

√

(x− xn)2 + z2n + cτn.

Finally, the value forzf(x) can be inserted back into (4) to calculate the dynamic receive delay applied across each multiply
scattered wavefront.

Next, we describe a method for intentionally modulating theaperture domain signal so that the primary region of interest
is not near DC. The approach scales the depth dimension used for calculating the dynamic receive delay profile, which causes
different receive delays than usual to be applied at a given depth. In this case, (4) is modified to

τDRγ
(x;xf , zf) =

1

c

√

(x− xf )2 + ((1 + γ)zf)2 +
(1 − γ)zf

c
, (7)

and to extend to the multipath wavefront we again solve forzf (x) using (5) to obtain

zf (x) =
d0(x)(1 − γ)

4γ
×

(1 + sgn(γ)

√

1− 4
γ((x− xn)2 − d0(x)2)

d0(x)2(1− γ)2
), (8)

whereγ is the scaling factor for the depth. As defined, negativeγ creates curvatures corresponding to depths shallow to the
usual focus, and the reverse for positiveγ. Examples of the impact for severalγ values on wavefront curvature are shown in
Fig. 3.

The wavefront delays used in (2) are

τ(x;xn, zn, τn) = τDiff (x;xn, zn, τn)−

τDR(x;xf , zf (x))− (1 + γ)
zf(x)

c
. (9)

The wavefront delay is important for establishing the signal’s phase across the aperture, but it is also important for calculating
the amplitude modulation,A(x), across the aperture. Using the modeled delay and an estimate of the pulse shape the lateral

1This is consistent with concepts in spectral estimation where the Cramer-Rao lower bound for a given frequency estimateis a function of that frequency [31].
Of note here is that for spectral estimation problems the Cramer-Rao bound for the DC estimation variance is incredibly poor. In the application considered
here without an additional modulation, the wavefronts fromthe region of interest will be nearly DC signals.
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amplitude modulation can be calculated as

A2
FT (x) =

∫ tc+
∆t
2

tc−
∆t
2

w2
FT (t− tc)w

2
env(t− τ(x;xn, zn, τn)) dt, (10)

where∆t is the width of the STFT window,tc is the center of the STFT window,wFT is the window used for the STFT and
wenv is the axial pulse envelope. For many relevant cases ofwFT andwenv, AFT (x) can be calculated analytically, but it
is also possible to calculateAFT (x) from sampled realizations ofwFT andwenv. This second case may be useful for more
exact representations of the pulse shape using empirical hydrophone measurements, or to adaptively estimate the pulseshape
based on speckle statistics [32]. Here, for simplicity, we restrict ourselves to a rectangular window forwFT and a Gaussian
envelope forwenv . This lateral modulation resulting from STFT windowing does not describe all of the potential amplitude
variation across the aperture.

We also include the effect of element sensitivity as described by Selfridge et al. and expressed as

Aes(x) =
sin(πw sin(θ)

λ
)

πw sin(θ)
λ

cos(θ) (11)

whereθ = tan−1(x−xn

zn
) [33]. Incorporating angular sensitivity is most importantfor shallow scatterers with high incidence

angles of the received wavefront with transducer elements.Combining angular sensitivity with the STFT characteristics gives
the amplitude modulation modeled here,

An(x) = AFT (x)Aes(x). (12)

The accuracy of the model was determined using Field II simulations with the parameters in Table I.

B. Model Space

Using our linearized scattering model for ADMIRE, we can express the signal received at a specific time as

y = Xβ, (13)

wherey is a single frequency of the observed channel data from a given STFT window location constructed as

y = [ℜ{Sw(xi;mT,ωp)} ℑ{Sw(xi;mT,ωp)}]
⊤,

X is the model matrix of predictors constructed from (2),

X =

[

ℜ{ps(x; t, ω)}
⊤ −ℑ{ps(x; t, ω)}

⊤

ℑ{ps(x; t, ω)}
⊤ ℜ{ps(x; t, ω)}

⊤

]

,

andβ contains the coefficients for the predictors inX . ℜ andℑ denote the real and imaginary parts, respectively. The model
matrix is formed by sampling the space from which scatterersare expected to return. There are many possible approaches to
sampling the model space. Here, we identify a region ahead oftime that will be the acceptance zone. Scatterers originating
from within this zone will be used to reconstruct decluttered data, while scatterers outside this zone are discarded. Inour
experiments so far it is most efficient to sample the model space finely within the region of acceptance and sample the model
more coarsely in the rejection zone.

We define the acceptance zone based on the expected resolution of a model predictor centered in the region of interest.
The lateral resolution is calculated based on the bandwidthof the signal originating from the center of the region of interest,
i.e. reslat ≈λzF{|ps(x;xc, zc, 0)|}BW , whereF{| · |}BW denotes the lateral bandwidth of the model predictor and(xc, zc)
denotes the center of the region of interest. The axial resolution of the region of interest is approximated asresaxl≈2reslat,
and comes from work on parameter estimation of linear frequency modulated sinusoids [34]. The lateral and axial resolution
are used to define an ellipsoidal acceptance region,

(

xn − xr

clreslat

)2

+

(

zn − zr
caresaxl

)2

≤ 1, (14)

wherecl andca are scale factors selected to modify the size of the acceptance region, andxr andzr denote the center of the
acceptance zone.

The sampling of the continuous parameter space of the ultrasound field can have a large outcome on the resulting decompo-
sition. It is computationally advantageous to restrict thenumber of predictors in the modelX , but an insufficiently populated
model inhibits the ability of the model to suppress clutter and preserve the signal of interest. For all of the results here we have
two different sampling grids depending on whether intentional receive modulation is used. For both sampling grids the “phase”
parameter,taun is the same with a spacing of0.0485λ in the acceptance region and0.2423λ outside the acceptance zone.
For the case of normal receive delays (γ = 0) the lateral and axial grid sampling inside the acceptance zone is0.0668reslat
and 0.267resaxl, respectively, and the sampling outside the acceptance zone is 1.34reslat and 1.34resaxl, respectively. For
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the case of receive modulation withγ = 0.5 the sampling is finer. In this case the lateral and axial grid sampling within the
acceptance region is0.025reslat and 0.10resaxl, respectively. Outside the acceptance region the grid sampling is 0.5reslat
and 0.5resaxl, respectively. For the purposes of image reconstruction a fixed grid is used throughout the image. This has
the advantage of efficiency at the cost of increased decomposition error. For some applications not presented here it maybe
desirable to incorporate model selection and regularization tuning into a more robust cross-validation scheme, whichis beyond
the scope of this paper.

C. Decomposition and Regularization

Depending on the specific model-space sampling, the imagingsequence and the imaging depth, the ADMIRE model matrix
could contain anywhere from several hundred predictors to over a million predictors. This is in contrast to the number of
samples in the data vector,y, which will rarely have more than 256 elements for a 1D array.The massive difference between
the number of data points and the number of model predictors presents a challenge. Ideally, estimatingβ could be accomplished
by minimizing the squared error—̂β = (XTX)−1XT y, but this is ill-posed. To address this problem, additionalconstraints
must be added in the form of regularization terms. Regularization schemes constraining the solution with L1 or L2 norms are
typical. L1 is useful because it promotes coefficient sparsity, but the final solution will have fewer non-zero predictors than
observations, and the predictors will be nearly (if not totally) uncorrelated. This property of L1 regularized model-fitting may
be problematic for somein vivo ultrasound aperture-domain data sets because in many casesit will require multiple correlated
model-predictors to reconstruct all scattering sources. Besides L1, the other typical scheme is L2 regularized model fitting.
L2 is attractive because it allows for solutions with correlated model predictors, but while correlated predictors areuseful,
L2 performs coefficient shrinkage (not selection), so an L2 constrained solution may not have any coefficients equal to zero.
Practically, this means that when using an L2 constraint fordata originating from inside an anechoic cyst (i.e. no expected
scattering from within the cyst), the model fit will almost always predict that there is scattering originating from the region of
interest.

L1 and L2 regularization both have shortcomings for the decomposition problem posed here. These shortcomings will
be demonstrated empirically in the results. To overcome these, we use elastic-net regularization to perform the ADMIRE
decomposition [35]. Elastic-net regularization solves the following optimization problem,

β̂ = argmin
β

(‖y −Xβ‖2 + λ(α‖β‖1 + (1 − α)‖β‖22/2)), (15)

where‖β‖1 =
∑N

n=0 |βn| is the L1 term,‖β‖2 =
√

∑N

n=0 |βn|2 is the L2 term,α is between 0 and 1 and determines the
relative weight between L1 and L2, andλ is the total regularization parameter. Elastic-net regularization is attractive because it
allows for correlated model predictors to be present simultaneously due to L2, but it also allows for non-zero model predictors
due to the L1 term. These regularization schemes tends to introduce related sets of correlated model components as a cluster,
which has been referred to as group selection. Elastic-net regularization becomes an L1 problem ifα = 1 and L2 if α = 0.
The elastic-net and the limiting L1 and L2 regularization problems are solved using the efficient software package glmnet [36].

In order to appropriately compare models with differentα andλ values it is useful to know the degrees of freedom for a
given model. The general degrees of freedom for an elastic net regularized regression solution is

df(λ) = Tr[XA(X
T
AXA + λI)−1XT

A] (16)

=
P−1
∑

n=0

d2n
d2n + λ

,

whereXA is a reduced model composed of only predictors with non-zerocoefficient estimates anddn values are singular
values of the reduced model [37]. The singular value decomposition was performed iteratively using an efficient memory
approach to accommodate the potential for large model matrices [38].

D. Signal Reconstruction

Once the signal has been spatially decomposed using the model, the final step in ADMIRE is to reconstruct a clean signal.
This is accomplished by identifying model predictors within the region of interest specified by (14), which we denote asXB.
The signal from the region of interest is reconstructed as

yROI = XBβ̂B. (17)

The clutter suppressed signals are converted back to time-domain channel data using an inverse short-time Fourier transform
(ISTFT).
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E. Short-Time Fourier Transform

The STFT used here is implemented as

Si(mT,ωp) =
∞
∑

l=−∞

s(l)wFT (mT − l)e−jωpl, (18)

whereT denotes the time sampling period of the STFT,wFT (l) is the sliding window that selects the short-time segments,
andωp are the discrete frequencies, typically distributed as2πk/N for k = [0, ...N − 1]. To make the connection back to the
model clear,Si(mT,ωp) would be the STFT for a single channel of the aperture, where each channel is indexed byi, and
this index corresponds tox in ps(x; t, ω).

An ISTFT is used to reconstruct the time-domain signal afterthe model decomposition and aperture domain signal recon-
struction. The inverse transformation back into the original domain is accomplished using the least-squares ISTFT described
by Yang [39], which is

si(n) =
wFT (mT − l)

∑∞

ωp=−∞
Si(mT,ωp)e

jωpl

∑∞

l=−∞
wFT (mT − l)2

. (19)

F. Computational Complexity

Signal decomposition using elastic net regularization hasa computational order ofO(m3 + sm2) wheres is the number of
predictors in the model matrix,X , andm is the number of steps in the L1 portion of the model-fit. [35].(The computational
complexity matches the complexity for a single ordinary least squares fit.)

G. Multipath simulations for regularization tuning

The ADMIRE model fit described by (15) requires two differentregularization parameters to be empirically determined,α
andλ. These parameters are the total regularization weight (λ) and the balance between L1 and L2 (α). The tuning problem
here is slightly different from conventional tuning problems because for imaging applications we are most interested in the
error from only part of our signal, which is the signal returning from the region of interest. That is, after solving the elastic-net
regularized optimization problem in (15), we obtain a set ofnon-zero predictorsXA, and of these predictors, some additionally
reduced setXB will represent scatterers within the region of interest that will form the reconstructed signal. For imaging, the
primary goal is to minimize the error of the signal of interest while maximizing suppression of energy originating outside of
the acceptance zone. The error of the signal of interest is described as,

errROI = ||yROI −XBβ̂B||
2, (20)

whereyROI is the wavefront formed by scattering only from the region ofinterest, andβB are the coefficients corresponding to
the predictors within the ROI. In order to estimate the reconstruction error,errROI , it is necessary to know the true wavefront
of interest. The true wavefront is not knowable when usingin vivo data, and using fully non-linear simulations can also
make knowing the true signal of interest difficult. Therefore, for model validation, basic image evaluation and regularization
tuning we propose a pseudo-nonlinear approach to simulating multipath scattering induced signal corruption using thelinear
simulation package Field II [40], [41]. Field II already naturally simulates off-axis scattering and scattering from aspecified
region of interest, which means that once we introduce our extension, Field II can simulate all the degradation mechanisms of
interest here.

To add our multipath Field II extension, we simulate multipath scattering by simulating channel data for scatterers arriving
from a particular depth without any receive beamforming. Wethen shift the data to a later time by zero-padding and interpolating
the data in the time-domain to a specific time of interest. Once the multipath signals are simulated and delayed they are added
to the signal of interest. The channel data from multipath scattering can be scaled to simulate various levels of clutter.

This approach allows for simulations with both off-axis andmultipath clutter sources that are known exactly. For example,
clutter from many different regions can be simulated, and then the amplitude of all of these clutter signals can be normalized
relative to the signal of interest to create clutter with known power. Additionally, clutter from discrete scatterers can be
simulated, or clutter from diffuse scatterer sites can be used to create a more complex and possibly more realistic clutter
signal. Currently, each lateral line location is treated separately, which means that the lateral correlation does notmimic the
expected behavior. In principle this can be accounted for, but we do not address this at this point because our algorithm is not
affected by lateral correlation.

The motivation for this pseudo-nonlinear simulation approach was to easily calculateerrROI , but the simulation scheme
also allows for a simple contrast metric and provides more insight into regularization tuning. The contrast metric is calculated
from clutter data with and without a signal of interest. Thiscorrelates to estimating the contrast of an anechoic cyst. The signal
that contains both clutter and a signal of interest represents the background feature, and the signal with only cluter represents
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TABLE I: Field II Simulation Parameters

Parameter Value
Center Frequency (fc) 3 MHz
Bandwidth 60%
Lateral Pitch 0.257 mm
Elevation Width 2 mm
Samp. Freq. (Simulation) 640 MHz
Samp. Freq. (Downsampled) 40 MHz
Transmit Focal Depth 3 cm
Transmit f-number 1.8
Receive f-number 2
Lesion Radius 2 mm
Lesion Center Depth 3 cm

TABLE II: Decomposition Parameters

Parameter Value

STFT Window Length 8 log(2)
2πBWf0

STFT Padded Window Length 2× Window Length
STFT Window Type Rectangular
STFT Window Overlap 90%
Decomposed Bandwidth 120%
cl 6
ca 2
γ variable
α variable
λ variable
Sampling Grid variable

an anechoic lesion feature. The metric is calculated using

Creg = 20log10
wH(XBβ̂B)clutter only simulation

wH(XBβ̂B)signal and clutter simulation

(21)

where w is a beamforming vector that corrects for intentional modulation before summing andH is the complex transpose.
This metric provides insight into how well the signal of interest’s power is preserved compared to how well the power of the
clutter is suppressed.

H. Field II Contrast Simulations

In addition to using Field II to help tune the regularizationparameters, Field II is also used to evaluate ADMIRE’s
performance on linear simulations of contrast phantoms. The motivation is to determine how well the decomposition algorithm
preserves contrast and contrast-to-noise ratio (CNR) in uncluttered data. This is important because in our previous model
and decomposition scheme CNR was reduced in about half of thedata; however, because most of the previous analysis was
performed onin vivo data, the exact cause of the CNR decrease was impossible to determine because decreases in CNR
could be due to increased structure like blood vessels exposed in the background region. To address this, a number of Field
II simulation experiments were conducted using the parameters in Table I. Contrast phantoms were simulated with lesion
contrasts of totally anechoic, -20 dB, -10 dB, -5 dB, 5 dB, 10 dB and 20 dB. Each contrast level was simulated with twelve
independent speckle realizations. For each data set we measured the contrast as,

C = −20log10

(

µlesion

µbackground

)

, (22)

the CNR as

CNR = 20log10





|µbackground − µlesion|
√

σ2
background + σ2

lesion



 , (23)
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and the speckle SNR as
SNRspeckle =

µbackground

σbackground

, (24)

whereµ andσ2 denote the indicated mean and variance , respectively, of the enveloped but uncompressed regions of the image
data.

Field II was also used to simulate cluttered contrast phantoms. In this case anechoic lesions were simulated with signalto
clutter ratios of 0 dB, 10 dB and 20 dB. The clutter that was added to the anechoic lesion simulations was made using the
multipath scattering approach described earlier. Approximately 8 diffuse clutter sites were added to the signal every0.25 mm.
The clutter sites could originate from anywhere shallow to the region where they would be added to the linear simulation and
up to 1 cm on either side of the transmit beam’s axis. Each diffuse clutter site contained 25 scatterers.

I. In Vivo Examples

We evaluated ADMIRE on three[in vivo] data sets acquired with a Siemens S2000 and 4C-1 curvilineararray (Siemens
Healthcare, Ultrasound Business Unit, Mountain View, CA).Two of the data cases were acquired at 4 MHz, and the third
was a harmonic pulse inversion sequence with a 1.8 MHz transmit frequency and a 3.6 MHz center frequency on receive.
ADMIRE was applied to the data as described. The model sampling parameters for the region of interest were0.167reslat,
0.668resaxl, and0.0485λ for the lateral, axial and phase dimensions, respectively.Outside the region of interest the sampling
was3.35reslat, 3.35resaxl and0.2423λ for the lateral axial and phase dimensions, respectively. For comparison the data sets
were beamformed with and without hamming apodization on receive. Apodization was applied after ADMIRE.

III. R ESULTS

A. Model Error and Clutter Correlation Patterns
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Fig. 4: Model error power is shown for the old model (a), the proposed model without additional modulation (b), and the new
model with an additional modulation corresponding toγ = 0.5 (c). The new model has distinctly lower model error compared
to the old model. The new model has low error for both cases, but the case of the intentional receive modulation has slightly
lower error.

Model errors are shown in Fig. 4. The figure compares the modelerror for our previous model and two realizations of the
current model. The region of interest is at 5 cm for the results shown in the figure. The results show that the error for the new
model is similar regardless of the modulation, but the modulation does allow the region of interest to be decomposed withthe
lowest error predictors, and it increases the size of the region with error less than -20 dB. The model error for all the models
becomes high in the very near-field, which may be related to the performance of Field II in the near-field.
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B. Example of a Simulated Cluttered Wavefront
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(b) Field II with Simulated Clutter
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Fig. 5: An example of the multipath Field II simulations is shown. In (a) a normal Field II simulation is shown. In (b) the same
Field II simulation corrupted by Field II simulated multipath scattering is shown. In (c) anin vivo example featuring several
distinct wavefronts is shown. The Field II simulation with simulated multipath and off-axis clutter features some similarities
to the in vivo data that are not present in the usual Field II simulation. For example, in thein vivo and cluttered simulation
there are apparent sharp discontinuities in the wavefront that are not apparent in the first Field II simulation.

We show an example of simulated cluttered data using the approach described in the methods in Fig. 5. The figure shows
an uncluttered Field II simulation and the same Field II simulation cluttered with simulated multipath and off-axis scattering.
The cluttered simulation contains qualitative features similar to thein vivo data, which includes sharp discontinuities across the
aperture and apparent suppression of the wavefront in some regions. From visual inspection of thein vivo data there is likely
also sound-speed variation (i.e. phase-aberration) errors, which is not currently included in the simulation approach introduced
here.

C. Regularization Parameters

The results of varyingα andλ from (15) are shown in Fig. 6. These results demonstrate several important ideas about the
ADMIRE model-fit, and the advantages of incorporating an elastic-net scheme instead of solely L1 (α = 1) or L2 (α = 0)
regularization. Figs. 6a and 6c show the decrease in the fullsignal error as a function of increasing degrees of freedom.(In
this case plotting the independent axis using degrees of freedom instead of lambda more readily enables comparison between
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No Additional Receive Modulation, (γ = 0) Additional Receive Modulation (γ = 0.5)
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(e) Region of Interest Without Signal
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Fig. 6: Several different errors are shown as a function of degrees of freedom for several values ofα between L1 (lasso
regression) and L2 (ridge regression) regularized model-fits. Figs. 6a and 6c imply that L1 is the best scheme for minimizing
the error of the complete aperture domain signal; however, Figs. 6b and 6d demonstrate that L2 produces the lowest error
for the wavefront returning from the region of interest. These results are mitigated by the results in Figs. 6e, 6g, 6f and6h,
which demonstrate that anα value between 0 and 1 performs better at suppressing signalsoutside the region of interest and
adequately reconstructing the wavefront originating fromthe region of interest.

different values ofα, which are each optimized with differentλ values.) Displaying the data against degrees of freedom
initially suggests that L1 produces the best fit with the smallest error for small degrees of freedom. This result is usually
desirable; however, in this case L1 does not always produce the lowest error of the wavefront of interest, which is shown in
Figs. 6b and 6d. We also show that L1 does not produce the best improvement in contrast, which is shown in Figs. 6f and 6h.
The end result is that while L1 results in the best decomposition of the cluttered signal, L1 does not lead to the best decluttered
image.

For the task of reconstructing the wavefront of interest L2 can achieve the lowest mean square error with the fewest degrees
of freedom. However, while L2 reconstructs the signal shapewell; L2 by itself fails to effectively reject sources of clutter
originating outside the region of interest as demonstratedin Figs. 6e, 6g, 6f and 6h.

Figs. 6e, 6g show the amount of energy in the signal of interest when the true signal is composed only of clutter sources
(lower is better). This represents the scenario of a truly anechoic cyst. This is further emphasized in Figs. 6f and 6h showing
the image contrast proxy, (21).

D. Image Quality

Example lesions of the uncluttered linear contrast simulations are shown in Fig. 7. These results show good qualitative
agreement without clutter. The summary statistics for the contrast simulations are displayed in Fig. 8. These results compare
normal B-Mode versus B-Mode images formed from several different sets of regularization parameters. The contrast simulation
results are summarized using contrast, CNR and speckle SNR.The primary result is that ADMIRE preserves normal B-Mode
imaging metrics when clutter is not present, and in a few cases ADMIRE does better, such as with the anechoic contrast
simulation. This is important because it demonstrates thatADMIRE does not degrade or otherwise corrupt high-quality B-
Mode data.

Example lesions of cluttered anechoic contrast simulations are shown in Fig. 9. These results provide an example of how
the Field II multipath clutter image degradation looks for various signal to clutter levels. The summary statistics in Fig. 10
demonstrate that the ADMIRE images largely have better image metrics. The change in CNR is modest, but this small
improvement in CNR may be correlated to the relatively high variance inside the lesion even after decluttering.

In order to demonstrate that the simulation results translate to in vivo data three examples are shown in Fig. 11 with contrast
and CNR metrics compiled in Table III. Results are shown for several sets of regularization parameters. For each set of
parameters the contrast is clearly better compared to the original data, but in some cases the CNR decreases. However, based
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Fig. 7: 4 mm lesions are visualized using a 3 MHz F/2 imaging system. The contrast of the simulated phantoms goes from
completely anechoic to +20 dB. For all cases there is little change between the decluttered and normal B-Mode data. The full
summary of all the simulations is shown in Fig. 8, but the result is that the decluttering algorithm does not produce images
with worse image metrics in the absence of clutter.

TABLE III: In vivo Image Metrics

Parameters Cont.(dB) CNR(dB)
rect. Hamm. rect. Hamm.

Case #1 (Fundamental)
Normal B-Mode 12.4 13.1 0.76 0.49
α = 1, γ = 0 17.6 19.9 0.17 0.30
α = 0.9, γ = 0 20.9 23.6 0.50 0.61
α = 0.9, γ = 0.5 37.2 41.2 1.38 0.64

Case #2 (Fundamental)
Normal B-Mode 13.9 14.3 1.28 1.70
α = 1, γ = 0 17.8 18.3 1.40 1.98
α = 0.9, γ = 0 18.5 19.1 1.48 2.10
α = 0.9, γ = 0.5 24.7 25.1 2.06 2.30

Case #3 (Harmonic)
Normal B-Mode 12.2 12.6 -1.15 -0.95
α = 1, γ = 0 19.0 19.2 -0.47 -0.42
α = 0.9, γ = 0 19.8 20.0 -0.35 -0.29
α = 0.9, γ = 0.5 24.0 24.7 0.05 0.10

on the previous CNR results from Field II simulations and visual inspection of thein vivo example cases shown in Fig. 11 it
is reasonable to attribute the decrease in CNR to additionalstructure introduced in the background region used to calculate
the image metrics. Similar levels of improvement are encountered when ADMIRE is applied to fundamental or harmonic data.
We also report the full run time for each of thein vivo cases usingα = 0.9 andγ = 0.5 and operating on a single core of
an Intel Core i7-4790 3.60GHz processor (Intel Corporation, Santa Clara, CA). The total serial run times for the fundamental
cases were 46,932s and 46,540s. The harmonic run time was 27,542.

IV. D ISCUSSION

We have presented a new model and decomposition approach forthe ultrasound clutter problem, which we refer to as
ADMIRE. ADMIRE solves many of the open questions from our previous method. These include preservation of image-
quality and decomposition issues. One significant questionfrom before was how many model components to include in the
final decomposition. This is now a function of the regularization constraints and can be tuned to maximize image quality.It
should be noted that some of the image quality improvements are related to better STFT and ISTFT parameters compared to
those coupled to our previous algorithm, and therefore eventhe old model and decomposition scheme perform better than in
the original implementation [30].

In order to support ADMIRE a pseudo non-linear modification to Field II was introduced. We presented a qualitative
demonstration of this approach for generating realistic clutter, but the ultimate goal was to develop a useful tool for tuning
the regularization parameters. To this end, the unique application of Field II to generate multipath scattering was successful at
generating regularization parameters that translated successfully to both fundamental and harmonicin vivo data.
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Fig. 8: The results of 12 speckle realizations are shown as boxplots for several levels of lesion contrast and CNR. Results
are also shown for speckle SNR. Results are shown for normal B-Mode, and the new and old models. In these results the
shortcomings of the old model are clearly evident in the CNR and speckle SNR data, but in contrast the new model does not
have worse CNR or speckle SNR than normal B-Mode imaging. In some instances the CNR may be slightly better compared
to B-Mode imaging.
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Fig. 9: 4 mm lesions are visualized using a 3MHz F/2 imaging system. The contrast of the simulated phantoms goes from
completely anechoic to +20 dB. For all cases there is little change between the decluttered and normal B-Mode data. The full
summary of all the simulations is shown in Fig. 10, but the result is that ADMIRE does not produce images with worse image
metrics in the absence of clutter.

In our implementation of the model we assumed that a Gaussianenvelope was a reasonable representation of the pulse
shape. This assumption was not rigorously tested here, but qualitative inspection of thein vivo data does not reveal gross
changes in the speckle pattern or the resolution between normal and decluttered B-Mode images. Also as mentioned previously
our algorithm is not dependent on the Gaussian pulse approximation, and if necessary future algorithms can implement more
sophisticated approaches to better account for the pulse shape.

ADMIRE’s biggest drawback is run time. The reported run times for the example cases are a few hours per frame, which is
the serial run time for a Matlab implementation. The algorithm itself is easily parallelized, but even with a massively parallel
graphical processing unit (GPU) based implementation thiswould likely still require several seconds per frame. Moving forward
it will be important to consider computational or algorithmic modifications that can reduce processing time without sacrificing
the demonstrated improvements.

While the improvements realized in thein vivo examples shown in Figs. 11 and 12 are compelling, the reducedclutter
could lead viewers to inappropriately put diagnostic emphasis on clutter that is not eliminated. It is important to realize that
the current implementation is only designed to act on reverberation and off-axis scattering distributed along the axial and
lateral dimensions. Image degradation from other sources like diffraction limitations, phase aberration or clutter from out of
the imaging plane are not addressed here. These mechanisms of degradation could be integrated into ADMIRE in the future.

Finally, it is important to mention that although we are decomposing the received signal into a specific set of scatterers,
there are multiple distributions of scatterers that can recreate any given wavefront. The specific scatterers that end up in the
final model-fit are a function of the model space sampling and the choice of regularization parameters. Based on this, we do
not assume that there is any connection between the non-zerocoefficients from the model fit and the actual scatterers in the
imaged media. We do assume that the collection of scattererswithin a given region considered as a whole are representative
of the actual wavefront returning from a given region of tissue.

V. CONCLUSIONS

The problem of acoustic clutter is unresolved, and is still responsible for failed exams in many patients. To resolve this
issue we proposed a new model-based approach, ADMIRE. The approach declutters and preserves the RF-channel data, which
means it should be able to function in conjunction with otherclassic ultrasound algorithms. Our results show that ADMIRE
preserves B-mode image quality and acts as an all-pass filterwhen clutter levels are minimal; however, as clutter levelsincrease
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Fig. 10: The results of cluttered anechoic lesion simulations are shown as boxplots for several levels of signal-to-clutter ratio.
Results are shown for several different sets of regularization parameters. The results mostly show that the ADMIRE images
are better, but with very high or very low levels of signal-to-clutter ratio the improvement is not substantial. The largest
improvement are seen from the images formed usingα = 0.9 andγ = 0.5

ADMIRE effectively suppresses clutter energy, restoring image quality. Finally, it is worth noting that the final output is still
a B-Mode image, which is consistent with the training of current healthcare workers.
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Fig. 11: Threein vivo examples are shown to demonstrate that ADMIRE translates toboth fundamental and harmonic clinical
data. The results are qualitatively promising, and quantitative image metrics presented in Table III support the qualitative
improvements. Hypoechoic regions of the image presumed to be vessels are indicated with ‘V’, and the regions used to
calculate image metrics are outlined and denoted with an ‘L’or ‘B’ indicating lesion or background, respectively. In both
cases image improvements in the large structures are clear.In the first example, there is evidence that previously unvisualizable
vessels (upper left corner) become visible after decomposition.
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Fig. 12: The effect of applying a hamming apodization windowon receive is shown on the fundamental and harmonic B-Mode
images and the corresponding data after ADMIRE with theα = 0.9 and γ = 0.5 case. Thein vivo examples show that
apodization only results in modest improvements compared to ADMIRE. The matched contrast and CNR results are shown in
Table III
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