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Abstract—Radiation force–based elasticity imaging is currently being investigated as a possible diagnostic modal-
ity for a number of clinical tasks, including liver fibrosis staging and the characterization of cardiovascular tissue.
In this study, we evaluate the relationship between peak displacement magnitude and image quality and propose
using a Bayesian estimator to overcome the challenge of obtaining viable data in low displacement signal environ-
ments. Displacement data quality were quantified for two common radiation force–based applications, acoustic
radiation force impulse imaging, which measures the displacement within the region of excitation, and shear
wave elasticity imaging, which measures displacements outside the region of excitation. Performance as a function
of peak displacement magnitude for acoustic radiation force impulse imaging was assessed in simulations and
lesion phantoms by quantifying signal-to-noise ratio (SNR) and contrast-to-noise ratio for varying peak displace-
ment magnitudes. Overall performance for shear wave elasticity imaging was assessed in ex vivo chicken breast
samples by measuring the displacement SNR as a function of distance from the excitation source. The results
show that for any given displacement magnitude level, the Bayesian estimator can increase the SNR by approxi-
mately 9 dB over normalized cross-correlation and the contrast-to-noise ratio by a factor of two.We conclude from
the results that a Bayesian estimator may be useful for increasing data quality in SNR-limited imaging environ-
ments. (E-mail: brett.c.byram@vanderbilt.edu) � 2016 World Federation for Ultrasound in Medicine &
Biology.
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INTRODUCTION

Radiation force–based elasticity imaging describes a
group of ultrasonic techniques that estimate the elastic
properties of underlying tissue structures based on their
response to acoustic radiation force (ARF). The tissue
mechanical response to the ARF-induced deformation
is generally observed spatially and temporally using con-
ventional ultrasonic pulses (Doherty et al. 2013b;
Gennisson et al. 2013; Nightingale 2011; Sarvazyan
et al. 1998). These data are then used to either form a
displacement image showing the relative stiffness of
tissue structures (i.e., acoustic radiation force impulse
imaging [ARFI]) or input into a mechanical model to
extract quantitative mechanical tissue properties (i.e.,
shear wave elasticity imaging, wherein shear moduli
values are derived from measurements of shear wave
velocity) (Nightingale et al. 2001; Sarvazyan et al.
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1998). ARF-derived metrics have been proposed by
several groups as potential imaging biomarkers for stag-
ing liver fibrosis (Deffieux et al. 2015; Palmeri et al. 2011;
Urban et al. 2012; Zhao et al. 2014); characterizing
cervical, breast and prostate tissue (Athanasiou et al.
2015; Carlson et al. 2014; Muller et al. 2015; Palmeri
et al. 2015; Zhai et al. 2012); staging kidney disease
(Samir et al. 2015; Urban et al. 2012); characterizing
cardiovascular disorders (Czernuszewicz et al. 2015;
Scola et al. 2012; Doherty et al. 2015); and monitoring
and guiding radiofrequency (RF) ablations in cardiac
tissue (Eyerly et al. 2015; Bahnson et al. 2014).

It is not surprising that the quality of these tech-
niques is dependent in part on the quality of the ARF-
induced displacement estimates. Physiological motion
(Fahey et al. 2007), speckle-bias (Elegbe and
McAleavey 2013; Menon et al. 2010), thermal noise,
finite spatial and temporal resolution and finite signal
bandwidth all limit achievable displacement accuracy
(Walker and Trahey 1995). Additionally, peak ARF-
induced displacement is limited by increased attenuation

Delta:1_given name
Delta:1_surname
Delta:1_given name
mailto:brett.c.byram@vanderbilt.edu
http://dx.doi.org/10.1016/j.ultrasmedbio.2016.03.004
http://dx.doi.org/10.1016/j.ultrasmedbio.2016.03.004
mailto:brett.c.byram@vanderbilt.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ultrasmedbio.2016.03.004&domain=pdf


Improving displacement SNR d D. M. DUMONT et al. 1987
(i.e., by absorbing and shifting the peak signal shallow to
the region-of-interest [Palmeri et al. 2005; Palmeri and
Nightingale 2011]), by regulatory limits on acoustic
output (i.e., mechanical index) or thermal bioeffects
(Deng et al. 2015; Dhanaliwala et al. 2012; Liu et al.
2014) or, in the case of shear wave elasticity imaging,
by the geometric spreading and absorption of the shear
wave as it propagates (Parker and Baddour 2014;
Sarvazyan et al. 1998). In viscous tissue, increased
shear wave attenuation due to dispersion can further
decrease displacement magnitude (Parker and Baddour
2014), potentially limiting the distance the propagating
shear wave can be successfully observed. Limitations in
achievable displacement signal-to-noise ratio (SNR)
due to limitations in achievable displacement signal
magnitude can impact the depth-of-penetration of these
techniques (Palmeri and Nightingale 2011), the percent
yield of viable or ARF-derived measurements (Deng
et al. 2015).

Previously, we proposed using Bayesian-based
displacement estimation to improve the tracking of small
displacements, and found that the estimator could reduce
the mean-square error of the displacement estimate by
approximately an order of magnitude over a traditional
correlation-based estimator (Byram et al. 2013a, 2013b;
Dumont and Byram 2016). Our prior investigation
quantified the performance in a mean-square error sense
in the context of thermal noise and shearing-induced de-
correlation solely for ARFI imaging, whereas here we
investigate the recovery of data quality in low displace-
ment scenarios at the initial on-axis excitation site and af-
ter attenuation due to shear wave propagation (Dumont
and Byram 2016).

In this work, we investigate the ability of the previ-
ously described Bayesian estimator to improve the
displacement SNR in the scenario in which displacement
magnitude is limited in some way, either by the physical
characteristics of the tissue itself or by limitations on the
radiation force that can be achieved by the system. While
there are many potential factors that can limit the amount
of ARF generated for a given depth in vivo (e.g., absorp-
tion along the propagation path, increased attenuation,
target depth, aberration of the excitation beam, etc.), we
make the simplifying assumption herein that the end
result of all these factors is low displacement signal in
the form of low displacement magnitude.

This paper is organized as follows. First, we review
the proposed Bayesian estimator. Next, we describe simu-
lation, phantom and ex vivo experiments quantifying per-
formance as a function of decreasing displacement
magnitude and compare the results of the Bayesian esti-
mator with that of a traditional, normalized cross-
correlation (NCC) estimator. Finally, we summarize the
data and discuss directions for improvement.
MATERIALS AND METHODS

Bayesian estimation of ARF-induced displacements
The tracking of small displacements using Bayesian

techniques has been described previously (refer to our
earlier work for more detail: Byram et al. 2013a,
2013b; Dumont and Byram 2016). Briefly, the Bayesian
estimator maximizes the global log-posterior probability
between a given set of displacement estimates and the
corresponding RF reference-track paired data. The log-
posterior probability PkðtkjxÞ is computed as the
following summation:

lnðPkðtkjxÞÞflnðPkðxjtkÞÞ1lnðPkðtkÞÞ; (1)

which gives the log-posterior probability of the displace-
ment estimate tk for kernel k given the log-likelihood,
lnðPkðxjtkÞÞ and the log-prior ln(Pk(tk)) (Dumont and
Byram 2016). The log-likelihood is given by:
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which evaluates the likelihood of obtaining data x, taken
here to be some reference RF signal s1 (containing n sam-
ples indexed over kernel-length M) after undelaying the
tracked RF signal s2 by 2tk (Carlson and Sjoberg 2004;
Dumont and Byram 2016). Parameter sn characterizes
the quality of the tracked RF data and is derived from a
peak correlation coefficient–derived estimation of the
SNR, which captures both thermal noise and tissue
decorrelation based signal distortions (Byram et al.
2013b; Dumont and Byram 2016). Additional
information is incorporated into the problem in the form
of a generalized Gaussian Markov random field prior:
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where tj are displacement estimates locatedwithin a neigh-
borhood that is spatially adjacent to the current estimate tk.
The terms l and p are tuning parameters that control the de-
gree to which additional information is combined with the
log-likelihood and the extent to which edges are preserved
within the displacement field (Bouman and Sauer 1993;
Dumont and Byram 2016). More specifically, p is a
continuous shape parameter with classic cases at p 5 2
(Gaussian distribution) and p 5 1 (Laplace distribution),
which determine how uniformly variations in
displacement through depth are penalized. The l

parameter controls the width of these distributions. For
this work, the method is implemented in the axial
dimension and estimates immediately adjacent to the
current estimate are used as the source of additional
information (Dumont and Byram 2016). The absolute



Table 1. ARF simulation parameters

Parameter Value

Attenuation coefficient 0.5 dB/MHz/cm
Likelihood kernel length 3/fc
NCC kernel length 3/fc
Peak displacement 0.3 # PD # 17.5mm
Probe bandwidth 60%
Probe focus 1.2 cm
Samp. freq. (RF data) 40 MHz
Samp. freq. (up-sampled) 120 MHz
Samp. freq. (field simulation) 1000 MHz
Speed-of-sound 1540 m/s
Tracking frequency 7 MHz
Tracking 10 kHz
Up-sample factor 3

ARF 5 acoustic radiation force; freq. 5 frequency;
NCC 5 normalized cross-correlation; PD 5 peak displacement;
RF 5 radiofrequency; samp. 5 sample.
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value term in the prior is approximated by

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððt02tjÞ21εÞ

q
Þp; 35 1026 (Lee et al. 2006; Dumont

and Byram 2016). The negative of eqn (1) is then summed
axially over the region-of-interest and is solved as a mini-
mization problem to find the vector of displacement esti-
mates producing the largest global log-posterior
probability (i.e., the smallest global negative log-
posterior probability). The non-linear minimization was
implemented in MATLAB (The Mathworks Inc., Natick,
MA, USA) using the unconstrained minimization routine
fminunc, and the optimization was run until reaching a
user-specifiednumberof iterations (1000)or a convergence
tolerance on the cost function or the parameter values. (In
MATLAB these parameters are TolX and TolFun, respec-
tively, and they were both left at the default value of 1026).
Simulations
Previously described techniques were used to create

finite element models of ARF-induced displacements
combined with Field II simulations modeling the tracking
of displacement fields in a 6.5 kPa homogeneous me-
dium. (Jensen 1996; Jensen and Svendsen 1992;
Palmeri et al. 2005, 2006). In the tracking portion of
the simulation, a scatterer density greater than 15
scatterers/resolution cell was used to ensure fully
developed speckle throughout the simulated field.

To investigate the relationship between displace-
ment magnitude and estimator performance, the load-
curve of the excitation source was scaled to produce a
range of peak displacements of approximately 0.3–
17 mm. Twenty-five independent speckle realizations
were then simulated for each displacement magnitude.
The simulated and tracked RF data were then corrupted
with additive white Gaussian noise to produce a SNR of
30 dB. Table 1 lists the parameters used for the simula-
tions and the Bayesian and NCC estimators.

Displacement SNR was then measured for each
dataset as

SNR5
m2

MSE
(4)

where m represents the mean displacement at a given axial
location, averaged over every realization, andMSE repre-
sents the mean-square error between the realization being
analyzed and the mean NCC displacement averaged over
every realization except the one being analyzed.
Displacement SNR was then quantified as a function of
time after the excitation.
Lesion visualization experiments
To investigate the impact of decreasing displace-

ment magnitude on lesion visualization for ARFI imag-
ing, a custom tissue-mimicking lesion phantom (CIRS,
Norfolk, VA, USA) was imaged with ARF using the Ve-
rasonics Vantage 128 Research scanner (Verasonics Inc.,
Redmond, WA, USA) and the L7-4 linear transducer.
Two lesions were imaged: a 21-kPa 10-mm spherical
lesion and a 45-kPa 10-mm spherical lesion embedded
in a homogenous 6.5-kPa background. ARFI 2-D images
were created by translating the excitation beam electron-
ically across a 3-cm field of view. The phantom response
to the ARF was monitored using plane wave insonifica-
tion at a pulse-repetition frequency of 6.7 kHz. Displace-
ment magnitude was varied by adjusting the pulse-length
of the excitation pulse (10–192 ms) to produce a range of
peak displacements within the phantom. The range of
excitation lengths are all shorter than the duration
required for the shear wave to propagate beyond the
spatial extent of the excitation, which means that the var-
ied pulse lengths should have a relatively minimal impact
on the frequency content of the shear wave (Nightingale
2011). Specifically, the propagation duration of the shear
wave in the stiffest material (45-kPa lesion) within the re-
gion of excitation is 238 ms compared to the longest exci-
tation pulse of 192ms. Table 2 lists the parameters used to
generate and process the displacement data for each esti-
mator. Displacement data were motion filtered to remove
any non-ARF-induced motion (Giannantonio et al. 2011)
and then formed into 2-D qualitative ARFI displacement
images.

Quantitative imaging performancewas evaluated for
each estimator as a function of displacement magnitude
by measuring the contrast and contrast-to-noise ratio
(CNR) between a 0.8-cm circle centered within each
lesion and one located at the same depth but offset into
the phantom background. The same regions were used
for both estimators. Contrast and CNR were quantified
for each dataset as
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Contrast5
mo2mi

mo

; and (5)

CNR5
jmo2mijffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
o1s2

i

p ; (6)

where mi, mo, s
2
i and s2

o are the displacement mean and
variance inside and outside the lesion, respectively.
Shear wave experiments
Next, we examined SNR differences during shear

wave propagation. Shear wave displacement amplitudes
decrease during propagation due to both geometric
spreading, as well as losses in dispersive media (Parker
and Baddour 2014; Sarvazyan et al. 1998). Estimation
performance as a function of distance from the
excitation source was quantified in samples of fresh
chicken breast (Kroger Foods, Nashville, TN, USA),
using the Verasonics Vantage 128 Research scanner and
the L7-4 linear transducer. Chicken breast was chosen
due to its increased shear viscosity over conventional
gelatin phantoms (Qiang et al. 2011). Each chicken breast
sample (n5 6) was degassed in a vacuum chamber, posi-
tioned underneath the transducer and acoustically
coupled to the array with gel. Shear wave datasets were
acquired by exciting the sample with ARF (using the
same excitation parameters described in Table 2, but
with a single excitation using a pulse length of 192 ms),
and then tracking the propagating shear wave using a
plane-wave transmit sequence at a pulse repetition fre-
quency of 6.7 kHz. Based on the size of the sample,
two to three sites were imaged per chicken breast for a to-
tal of 16 measurements.
Table 2. Lesion phantom experiment parameters

Parameter Value

Attenuation coefficient 0.43–0.49 dB/MHz/cm
Background Young’s modulus 6.5 kPa
Lesion I Young’s modulus 21 kPa
Lesion II Young’s modulus 45 kPa
Excitation f/number f/3
Excitation ISPPA.3 577 W/cm2

Excitation mechanical index 1.47
Excitation pulse length 10 # EPL # 192ms
Likelihood kernel length 2.7/fc
NCC kernel length 2.7/fc
Number of excitations 50
Probe frequency (fc) 5.2 MHz
Probe focus 2.5 cm
Samp. freq. (acquisition) 21 MHz
Samp. freq. (up-sampled) 125 MHz
Tracking 6.7 kHz
Up-sample factor 6

freq. 5 frequency; ISPPA 5 intensity spatial peak pulse average;
EPL 5 excitation pulse length; NCC 5 normalized cross-correlation;
samp. 5 sample.
Displacement data were then motion-filtered using
the interpolative regression method to minimize
non-ARF-induced motion (Giannantonio et al. 2011).
Due to the possibility of the variability between samples,
the displacement SNR was quantified differently than
with the simulation data. First, an estimate of the signal
power was computed by taking a 1-D moving average
of the axial displacement data for each estimator (3-mm
kernel) and then integrating the square of this average
signal over the same size kernel. Next, an estimate of
the noise power was computed by taking a 1-D moving
average of the axial displacement data (3-mm kernel)
estimated using NCC and then subtracting this average
NCC signal from the displacement profile calculated by
each estimator. These data were then integrated over
the same sized kernel and squared. Finally, the SNR
was calculated as the ratio of the signal power to the noise
power, and was converted to dB.

The SNR was then quantified as a function of both
space and time in 3-mm region near the excitation focus
(22–25 mm) along a trajectory defining the propagation
path of the traveling shear wave. The most likely trajec-
tory of the shear wave was determined using the Bayesian
displacement data and the Radon-sum method proposed
by Rouze et al. (2010). The same trajectory was used to
evaluate the SNR for both methods for a given dataset.
RESULTS

Figure 1 shows the axial displacement of the peak
time-step for every speckle realization as a function of
decreasing displacement magnitude. Figures 1a–1d
show the results for the normalized cross correlation esti-
mator, while Figures 1e–1h show the corresponding re-
sults when using the Bayesian estimator. Each image is
scaled to the show the central 90th percentile of the
displacement data (i.e., the 5th–95th percentile), while
the title for each sub-figure lists the corresponding peak
displacement from the finite element simulation. The re-
sults suggest the qualitative performance for NCC is
maintained when the displacement magnitude is
decreased to approximately 5 mm, followed by a notice-
able drop off in quality at approximately 1 mm,
where the variability within the measurement makes
resolving the true displacement profile challenging. At
0.3 mm, the NCC displacement profile is almost
completely masked by the measurement noise. In
contrast, the Bayesian data show much less variability
at all displacement magnitudes, with little drop-off in
quality until 1 mm. At 0.3 mm, the Bayesian estimator be-
gins to noticeably suffer, only partially recovering the un-
derlying displacement profile across realizations.

Figure 2 shows how the SNR changes as a function
of the displacement magnitude for the peak-displacement
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Fig. 1. Peak time-step displacement profiles for every speckle realization of the simulated, homogeneous data as a func-
tion of decreasing displacement magnitude (a–d) for NCC displacements and (e–h) for Bayesian displacements. Each im-
age is scaled to the middle 90th percentile of the data and the units are in mm. For all displacement magnitudes, the
Bayesian estimator (bottom row) shows less measurement variability than the corresponding NCC images, particularly
below 1 mm, where the underlying displacement profile is almost completely masked by the noise in the measurement.
In contrast, the Bayesian estimator is able to almost fully recover the profile at 1.2 mm and partially recover the displace-

ment profile at 0.3 mm. FEM 5 finite element model; NCC 5 normalized cross-correlation.
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time-step (t 5 0.6 ms following the excitation). The re-
sults show that the Bayesian estimator improves the
displacement SNR by an average of 8.9 dB (range 7.7–
10.9 dB) over NCC. The data also suggest that with the
Bayesian estimator, displacement magnitudes can be
reduced by almost one-half to one order of magnitude
without a significant loss of SNR performance relative
to NCC. Figure 2 also demonstrates the average decorre-
lation experienced at the peak focal displacement as a
function of peak displacement magnitude. These results
are shown for several levels of thermal noise in order to
provide context for when shearing or thermal noise–
induced decorrelation are the dominant mechanisms of
decorrelation. Thermal noise dominant decorrelation
can be identified because it is independent of peak
displacement, whereas shearing-induced decorrelation
scales with the peak magnitude. The no added noise
case (Inf dB) is shown to demonstrate the trend without
any thermal noise–induced decorrelation. Figure 3 shows
how the SNR changes for both estimators as a function of
time following the excitation. The data suggest that the
improvement in SNR when using the Bayesian estimator
is maintained up to and beyond the peak displacement
time-step. Finally, for context we report run times of
NCC and the Bayes method applied to peak ARF-
induced displacements using our MATLAB implementa-
tions. The NCC and Bayesian algorithms required 0.166
0.00047 s and 0.44 6 0.052 s, respectively. We do not
suggest that either of these are optimally implemented
in MATLAB, but it demonstrates approximate trends in
run time between the two algorithms.

Figures 4 and 5 show representative lesion phantom
images for both estimators as a function of displacement
magnitude and excitation pulse length: 192 ms (a), 96 ms
(b), 19 ms (c) and 10 ms (d), respectively. The results
illustrate both the loss of image quality and the
decrease in the visibility of the lesion as displacement
magnitude and thus signal strength are gradually
reduced. The NCC images suggest that image quality
does not noticeably change until the peak
displacements in the background region fall below
1 mm, at which point the variability of the measurement
begins to significantly reduce the visibility of the lesion.
For the shortest excitation pulse length (column d), the
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lesion is almost impossible to distinguish from the
measurement noise in the NCC image. The Bayesian
images show much less variability and greater apparent
lesion contrast at all displacement magnitudes. The
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Fig. 4. Example ARFI displacement images showing the 21-kPa lesion for the NCC estimator (top row; a–d) and the
Bayesian estimator (bottom row; e–h) as a function of displacement magnitude and excitation pulse length. Each image
is scaled to the middle 90th percentile of the data and the units are in mm. The apparent contrast of the lesion appears to be
higher in the Bayesian images than the corresponding NCC images for all excitation lengths (and thus displacement mag-
nitudes). The lesion is well visualized by the Bayesian estimator down to an excitation burst length of 19 ms, and is
partially visible when the excitation is reduced to 10 ms. For the NCC estimator, the lesion is poorly resolved when

the displacements fall below 1 mm. NCC 5 normalized cross-correlation.
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Figure 6 shows the lesion contrast and CNR as a
function of increasing displacement magnitude. The re-
sults show that for any given displacement magnitude
level, the Bayesian estimator can double the CNR while
still maintaining contrast. The results also illustrate a
gradual decrease in CNR with decreasing displacement
for both estimators down to approximately 1–2 mm, at
which point the CNR falls off rapidly as displacement
magnitudes are further reduced. The results also illustrate
how much the displacement magnitudes can be reduced
when using a Bayesian estimator while still maintaining
similar CNR performance as NCC. As expected, the
contrast—primarily related to the imaging system and
the material properties—does not change between the
two approaches (Nightingale et al. 2006).

Figures 7a and 7b show displacement data computed
by each estimator from a single chicken breast sample as
a function of time and distance from the excitation source
for a point located at the focus. The solid white lines show
the corresponding time-of-flight trajectory estimated by
the Radon-sum transformation of the Bayesian data
used in the SNR analysis (Rouze et al. 2010). Figure 7c
shows displacement versus distance from the excitation
source for data points located along the time-of-flight tra-
jectory of the propagating shear wave. These data have
been normalized to the peak displacement located at the
very center of the excitation source. Each gray data point
shows the relative displacement for each measurement
site, while the black line shows the mean relative
displacement as a function of distance from the excitation
source, averaged over every sample (n5 16measurement
sites, 2–3 sites per chicken breast sample). The dashed
lines show the region chosen for the signal-to-noise anal-
ysis. The first dashed line defines a point that lies outside
the region-of-excitation where a shear wave is first clearly
observed within the data, while the second dashed line
represents the point where the relative displacement
(relative to the first dashed line) falls below 10% of its
initial value.

Figure 8 shows the SNR for the chicken breast data
as a function of distance from the excitation source. The
SNR is calculated over a 3-mm region below the excita-
tion focus and represents the SNR for the data that lies
along the time-of-flight trajectory of the propagating
shear wave; the error bars show the mean and standard er-
ror of the mean of the data over the 16 measurement sites.
These data show that the Bayesian estimator gives an
average improvement of 8.5 dB in displacement SNR
(range, 2.6–11.9 dB) over NCC and that this improve-
ment is largely maintained throughout the analysis
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region. These data show that for an NCC estimator, the
displacement SNR associated with the peak of the prop-
agating shear wave falls to approximately 0 dB within
7 mm, while the mean displacement SNR for the
Bayesian estimator falls to approximately 5 dB within
the same distance. If a cut-off value of 5 dB is chosen
as the magnitude in which a shear wave is successfully
detected, the Bayesian estimator—at least within this da-
taset—is able to track the shear wave peak approximately
twice as far in a dispersive media.
DISCUSSION

The results illustrate the degradation in displace-
ment SNR that occurs with decreasing displacement
magnitude in ARF-based imaging and demonstrate the
ability of a Bayesian-based estimator to improve SNR
relative to NCC, even as signal strength is gradually
decreased. Figure 2 shows that the SNR for both estima-
tors increases at a logarithmic rate up to 10 mm, at which
point the SNR begins to plateau to approximately 17 dB
for the NCC estimator and 25 dB for the Bayesian esti-
mator. Our peak NCC SNR results are consistent with
simulation work performed by Dhanaliwala et al.
(2012), who reported SNRs of approximately 20 dB for
simulated ARF-induced displacements greater than
10 mm, when using the Loupas autocorrelator and a 1-D
transducer. Our NCC SNR results are also similar to the
results reported by Dhanaliwala et al. (2012) for peak
displacement magnitudes less than 1 mm, where the
displacement SNR is observed to fall below 0 dB. Over-
all, our data suggest that for any given displacement
magnitude level, the Bayesian estimator can improve
the SNR by approximately 8–9 dB over a conventional
NCC estimator.

The trend in SNR with respect to displacement
magnitude illustrates the complex relationship that
shearing-induced decorrelation, speckle bias and the lim-
itations imposed by the finite spatial resolution, temporal
resolution, bandwidth and sampling capabilities of ultra-
sound have on the performance of any ARF-based
displacement estimator. At relatively high displacement
signal strength (i.e., .10 mm), the SNR is bounded by
the shearing-induced decorrelation, whereas at relatively
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low displacement signal strength, the SNR is dominated
by the lower bound on the variance of the measurement
jitter due to the signal and resolution limitations of ultra-
sound (Palmeri et al. 2006; Walker and Trahey 1995). In
other words, decreasing the ARF displacement
magnitude does result in decreased noise power of the
NCC estimates, but the end result is still a lower
displacement estimation SNR due to the inherent
limitations of the imaging system (Walker and Trahey
1995).

Our results suggest that SNR of the Bayesian esti-
mator follows a similar trend with respect to displace-
ment magnitude, which is not surprising given that the
noise model for the likelihood is estimated from the
NCC coefficient between the time-shifted signals. Even
though the Bayesian estimator has been demonstrated
to have superior performance in terms of measurement
variance (Dumont and Byram 2016), this work suggests
that the improvement in variance performance is not
enough to completely offset the loss in signal as displace-
ment magnitudes are reduced. It is possible that our
assumption—that a peak correlation coefficient–derived
noise metric can completely model the noise inherent to
the estimation task—becomes less appropriate at very
low displacements, where the lack of significant decorre-
lation results in high correlation coefficients, which may
not be representative of the true measurement variance
associated with measuring sub-micron displacements. It
is also possible that our likelihood function—which is a
sum-square difference between the time-shifted sig-
nals—also bounds the performance. It is likely that
even better performance could be realized with a different
noise model or a function that can more accurately
estimate the likelihood associated with sub-micron
time-shifts. Additionally, this study uses conventional ul-
trasound to estimate the ARF-induced displacements.
Combining harmonic imaging tracking techniques with
the Bayesian estimator may result in further improve-
ments in SNR (Doherty et al. 2013a).

Figures 2, 4, 5, 6 and 7 demonstrate the most
important result from this study, which is that viable
ARF-based displacement data can be acquired with only
a few microns of displacement when using the Bayesian
estimator, and the dB improvement is maintained even
for very low displacement signals (i.e., ,1 mm). For
ARF-based applications that may be SNR-limited, such
as shear wave elasticity imaging in deep visceral organs
(Deng et al. 2015; Palmeri and Nightingale 2011), we
hypothesize the increase in displacement SNR achieved
by a Bayesian estimator will translate to an increase in
the spatial extent of viable data (both in depth and away
from the excitation) that can be used for the elastic
modulus reconstruction, likely improving the yield of
viable measurements. Figures 4, 5 and 6 suggest that
viable ARF-based imaging data can be acquired with
significantly shorter excitation burst lengths when using
a Bayesian estimator. For ARF-based applications that
are not necessarily SNR-limited, we hypothesize that a
Bayesian estimator can be combined with lower intensity
or lower excitation pulse lengths to acquire displacement
data with similar SNR or CNR as NCC but at higher frame
rates.

There are a number of other advanced algorithms for
motion estimation, and a broad overview primarily
focused on advances for large tissue deformation has
recently been provided by De Luca et al (2015). For
RF-based block matching approaches, other advanced al-
gorithms have been proposed primarily to address prob-
lems encountered in quasi-static elastography (Chen
et al. 2010; Jiang and Hall 2007; Zahiri-Azar and
Salcudean 2006). In the case of static elastography,
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peak-hopping is a significant concern, so schemes to
constrain the displacement field in a gross sense are
important (Petrank et al. 2009). These methods are pri-
marily interested in recovering Cramer-Rao bound
limited estimates.

While it is possible that these schemes could be im-
plemented in a manner that surpasses the Cramer-Rao
lower bound in an overall mean squared error sense,
this has not been demonstrated in the literature. Others
have implemented regularized displacement estimators
that constrain the solution based on various metrics,
including the derivative (Chen et al. 2010; Pellot-
Barakat et al. 2004; Rivaz et al. 2008). This may have
advantages over our solution, and a derivative based
constraint could still be implemented within our
Bayesian framework. Finally, our approach most
appropriately scales the data based on an adaptive
measure of the signals noise power. Chen et al. (2010)
scales the data term in their lateral regularization
constraint by r/12r, which is similar to our approach,
but they do not correct for the local power in the RF
signal. For the ARF-induced displacement estimation
task, correctly scaling the data term (i.e., the likelihood
function) through depth is crucial to achieving better
displacement estimates.
CONCLUSIONS

We have presented a study investigating the relation-
ship between displacement magnitude for ARF-based ap-
plications and SNR for a correlation-based estimator and
a Bayesian-based estimator. SNR performance was quan-
tified in simulation, phantom and ex vivo tissue samples.
The results demonstrate that significant improvement in
SNR can be achieved with a Bayesian estimator, even
for low-magnitude displacements.
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