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Abstract— Radiation-force-based elasticity imaging de-
scribes a group of techniques that use acoustic radiation
force (ARF) to displace tissue in order to obtain quali-
tative or quantitative measurements of tissue properties.
Because ARF-induced displacements are on the order of
micrometers, tracking these displacements in vivo can be
challenging. Previously, it has been shown that Bayesian-
based estimation can overcome some of the limitations of a
traditional displacement estimator like normalized cross-
correlation (NCC). In this work, we describe a Bayesian
framework that combines a generalized Gaussian-Markov
random field (GGMRF) prior with an automated method
for selecting the prior’s width. We then evaluate its
performance in the context of tracking the micrometer-
order displacements encountered in an ARF-based method
like acoustic radiation force impulse (ARFI) imaging.
The results show that bias, variance, and mean-square
error performance vary with prior shape and width,
and that an almost one order-of-magnitude reduction in
mean-square error can be achieved by the estimator at
the automatically-selected prior width. Lesion simulations
show that the proposed estimator has a higher contrast-
to-noise ratio but lower contrast than NCC, median-
filtered NCC, and the previous Bayesian estimator, with
a non-Gaussian prior shape having better lesion-edge
resolution than a Gaussian prior. In vivo results from a
cardiac, radiofrequency ablation ARFI imaging dataset
show quantitative improvements in lesion contrast-to-noise
ratio over NCC as well as the previous Bayesian estimator.

I. INTRODUCTION

Ultrasound has become a ubiquitous tool for the diag-
nostic imaging of soft-tissue in part due to its low-cost,
ease-of-use, real-time imaging capabilities, and ability
to non-invasively characterize motion within the human
body. This last feature has led to the routine use of
ultrasound-derived motion information in a number of
applications, including Duplex ultrasonography, the reg-
istration of free-hand, volumetric data [1], tissue-Doppler
echocardiography [2], thermal-strain imaging [3], clut-
ter reduction [4], vector-velocity imaging [5], and
ultrasound-based, elasticity imaging [6]–[10].

These techniques depend on accurately measuring
the relative displacement between sequentially-received,
pulse-echo signals. In practice, displacement estimation
quality can be degraded by a number of factors, some de-
pendent on the specific-type of algorithm chosen, while
others are related to the characteristics of the transducer
and the imaging target. For example, traditional phase-
shift time-delay estimators (TDEs) can be subject to
aliasing artifacts while time-shift TDEs can be degraded
by correlation-peak hopping. Both types of estimators
are performance-limited by finite transducer bandwidths,
finite signal window-lengths, thermal noise, and signal
decorrelation [11]. The effect these parameters have on
estimator performance has been described previously
and is given by the Cramér-Rao Lower Bound (CRLB),
which places a bound on the minimum estimation error
variance that can be achieved in a specific, imaging
situation by an unbiased estimator [11].

A new class of displacement estimation algorithms
have been developed that are capable of achieving sig-
nificant improvement relative to a CRLB-limited estima-
tor [12]–[14]. These methods—termed Bayesian speckle
tracking or Bayesian regularization—use prior knowl-
edge of the estimation task in order to improve the cur-
rent estimate. Byram et al. showed that Bayesian speckle
tracking could produce displacement estimates with a
lower mean-square error relative to a CRLB-limited es-
timator for bulk displacement, strain-based elastography,
and radiation-force based elasticity imaging [13]. Mc-
Cormick et al. proposed an iterative, Bayesian regulariza-
tion method and showed that significant improvements
in estimate quality could be achieved in very few iter-
ations for ultrasound strain images with strains greater
than 5 % [14]. While both approaches demonstrate the
reduction in estimate error that can be realized with
these techniques, there is room for improvement. For ex-
ample, Byram et al. proposed a directionally-dependent
prior scheme, and hypothesized that the falsely-imposed
causality limited its performance [13]. McCormick et al.
reported a reduction in image quality for strain-fields
smaller than 1 % [14], making it unclear how suitable



their approach will be for radiation-force based tech-
niques such as Acoustic Radiation Force Impulse (ARFI)
imaging or Shear Wave Elasticity Imaging (SWEI) [8],
[10].

To address these limitations, we recently proposed
a Bayesian estimator that uses a generalized-Gaussian
Markov Random Field (GGMRF) prior, one that has
no direction-dependence and allows for adjustments in
prior shape [15]. Our initial results showed improvement
in mean-square error compared to normalized cross-
correlation, but the error analysis was limited to tracking
ARF-induced displacements in simulated, homogeneous
data with little noise. It was unclear in our preliminary
work on how well the estimator performed in visualizing
non-homogeneous structures in the presence of increased
noise, how to reliably select the prior width from the data
or what advantages the new prior offered in comparison
to the previous approach [12], [13], [15].

In this paper, we review the algorithm’s implemen-
tation and propose an automatic approach for select-
ing the prior’s width directly from the data. Next, we
compare the algorithm’s performance to the previous
Bayesian formulation suggested by Byram et al. as well
as normalized cross-correlation [12], [13], and extend
our analysis to quantifying estimator accuracy as well
as lesion visualization over a larger parameter and noise
space. Finally, we measure execution time and discuss
directions for improvement.

II. METHODS

A. Previous Formulation

The estimator proposed by Byram et al. is formulated
as follows [12], [13]. Briefly, Bayes’ Theorm is written
as

Pm(τ0|x) =
Pm(x|τ0)Pm(τ0)∫

Pm(x|τ0)Pm(τ0)dτ + 0
, (1)

which expresses the posterior probability density func-
tion (PDF) of the displacement estimate τ0 given
the observed, normalized cross-correlation function x
computed between two time-shifted RF signals [13].
Pm(x|τ0) is the likelihood function, Pm(τ0) is the prior
PDF , Pm(x) is the marginal likelihood PDF, while m
indexes the radio-frequency data axially. The likelihood
function Pm(x|τ0)

Pm(x|τ0) ∝ exp

SNRρ
α

τ0/∆+N−1∑
n=τ0/∆

ψ


ψ =

s1(n∆)s2(n∆− τ0)√
σ2
s1σ

2
s2

,

(2)

scales the normalized, cross-correlation function–
calculated between RF signals s1 and s2 with sampling
period ∆, kernel length N , and sample index n–by an
empirically-determined, scaling term α and the signal-
to-noise ratio SNRρ [12], [13]. The SNRρ term is a
peak-correlation-coefficient estimate of the SNR [13],
[16] and is given as

SNRρ =
ρ

1− ρ
. (3)

where ρ is peak correlation-coefficent computed between
the time-shifted signals.
Pm(τ0) represents the prior distribution of the es-

timate, and describes how additional information will
be incorporated into the posterior PDF. Byram et al.
proposed using the posterior distribution of the previous
depth’s estimate for the current depth’s prior distribu-
tion, while also imposing a lower bound on the prior’s
distribution (denoted here as σ) to prevent the prior
from becoming too narrow relative to the likelihood [13].
For distributions that fall below this bound, a Gaussian
distribution with mean τ0m−1 (i.e. the previous depth’s
estimate) and standard deviation σ is used to represent
the prior information for the current depth [13]. The
displacement estimate is found using the maximum a
posteriori (MAP) principle,

τ̂0 = argm
τ0
ax(Pm(τ0|x)) (4)

which finds the displacement estimate for kernel m that
maximizes the posterior probability given the previous
estimate’s prior and the current estimates’s likelihood
function [13].

B. Proposed Estimator

The previously-described estimator has several disad-
vantages which limit its performance. First, the posterior
PDF is only influenced by the previous estimate. As will
be demonstrated, this false-causal implementation can
bias the current depth’s estimate towards the previous
depth’s estimate, distorting the final displacement image
and increasing the estimation error. It also constrains
the performance of the estimator. Because the posterior
PDF only considers the previous depth’s distribution, the
current prior must be kept artificially broad in order to
ensure that the next’s estimate’s prior has not drifted too
far away from the true estimate. This limits the reduction
in measurement variance that can be achieved by the
estimator. Second, the implementation only considers
Gaussian approximations for the prior shape. Other
prior shape functions can be attractive for their edge-
preservation and noise-reduction properties [17]. Finally,
the posterior PDF is only maximized locally based on a



limited amount of information in one iteration. It is likely
that performance could be increased if the posterior PDF
was continuously refined with additional information,
until every estimate’s posterior PDF is maximized glob-
ally over the entire image.

To overcome these limitations, we proposed an iter-
ative approach that combines an edge-preserving gen-
eralized Gaussian-Markov random field (GGMRF) prior
with a reformulated likelihood function [15]. We review
the algorithm here. First, the likelihood Pm(x|τ0) is
rewritten explicitly as a function of the two time-shifted
RF signals instead of the normalized cross-correlation
function,

Pm(x|τ0) =

N−1∏
n=0

(2πσ2
n)−

1

2 exp

[
− 1

σ2
n

(ζ)2

]

= (2πσ2
n)−

N

2 exp

[
− 1

σ2
n

N−1∑
n=0

(ζ)2

]
ζ = s1[n]− s2[n;−τ0],

(5)

where the data x is not taken as the cross-correlation
function, but rather the RF signal s1[n]. N is the kernel
length, τ0 is the displacement estimate for a kernel m
containing n samples, and σ2

n is a noise term (described
later) that quantifies the uncertainty in the probability
distribution of the data [15], [18].1 The function de-
scribed in (5) expresses the likelihood of observing s1[n]
given delayed signal s2[n;−τ0] that has been un-delayed
by −τ0. The advantage of utilizing (5) over (2) is that it
avoids the need to use either an extremely high RF up-
sampling rate (to obtain the resolution necessary to track
micron-order displacements), or sub-sample estimation
(i.e. parabolic)–which can be problematic when utilizing
a non-Gaussian shaped prior.

Next, the false-causality is removed by reformulating
the prior. Like Byram et al. [12], [13], we assume that
the Pm(τ0) can be modeled using adjacent information,
but rather than restricting the prior distribution of τ0 to
information from the previous depth, we instead consider
a localized neighborhood of estimates centered around
the current estimate m. The influence of these adjacent

1Note that in Carlson et al.’s formulation [18], the likelihood is
computed by delaying signal s1 by τ0 and then computing the sum-
square difference between s1 and s2 when finding the maximum
likelihood estimate of the time shift. Here, the initial time-shift
and signal segments defining the kernels for s1 and s2 are already
established by an initial normalized cross-correlation calculation.
For convenience, we choose to then evaluate the likelihood for the
Bayesian estimator by undelaying the shifted signal s2 by −τ0, and
computing the sum-square difference.

estimates can be represented by a GGMRF prior [17],

Pm(τ0) =
1

Z
exp

− 1

pλp

∑
j∈B

wj |τ0 − τj |p
 , (6)

where p describes the shape of the distribution and
controls the cost of spatial discontinuities (i.e. edges).
The term λ scales the influence of the prior on the final
posterior PDF. Z is a normalizing constant, τ0 is the cur-
rent estimate for kernel m, and wj weights the influence
of adjacent estimates τj within the neighborhood B [15].

The prior described by (6) has several properties that
are attractive for estimating displacement fields. First,
there are only two tuning parameters (p and λ). Second,
the parameter p allows for a high-degree of control
in terms of preserving or smoothing image features.
When p = 2, the prior distribution is a Gaussian, and
the estimated displacement profile will have smooth
features. As p is reduced, the prior distribution becomes
increasingly non-Gaussian and will not penalize sharper
edges as heavily [15], [17]. Effectively, the GGMRF
prior will assign a larger cost to neighborhoods com-
posed of discontinuous estimates, and a smaller cost to
neighborhoods that have a continuous displacement field.

The posterior PDF Pm(τ0|x) describes the updated,
posterior PDF after considering the data and the ad-
ditional information. Because our goal is to find the
vector of displacement estimates τ0 that maximizes the
posterior PDF rather than the exact, normalized value of
the posterior PDF itself, it can be advantageous computa-
tionally to rewrite (1) in the log-domain. Rewriting both
(5) and (6) in the log-domain and dropping constant and
normalizing terms, the log-posterior PDF can be written
as

ln(Pm(τ0|x)) ∝ ln(Pm(x|τ0)) + ln(Pm(τ0))

∝ − 1

4σ2
n

N−1∑
n=0

(s1[n]− s2[n;−τ0])2...

− 1

pλp

∑
j∈B

wj |τ0 − τj |p.

(7)
Note that in (7), the log-likelihood (ln(Pm(x|τ0))) is a
sum-squared difference (SSD) calculation between the
RF signals, and the noise term σ2

n has been doubled
based on the work by Walker [19]. The noise term
σ2
n, which describes the uncertainty in the log-likelihood



function, is computed as

σ2
d = σ2

s + σ2
n

SNRρ =
σ2
s

σ2
n

=
σ2
d − σ2

n

σ2
n

σ2
n =

σ2
d

SNRρ + 1
,

(8)

where σ2
d is the power of the RF data, σ2

s is the power
of the signal, and SNRρ is given by (3) [15].

The displacement estimates for the entire dataset are
then found by

~̂τ = argm
~τ
ax

M−1∑
m=0

ln(Pm(τ0|x)) (9)

which describes the vector of M displacements that
produces the largest global log-posterior over the region-
of-interest [15].
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Fig. 1: Diagram showing the field-of-view for a simu-
lated 2D ARFI scan of a 4.5 kPa phantom (off-white)
with a 3 mm, 32 kPa embedded lesion (dark gray). Also
shown is the lateral location of the ARF excitation and
tracking beam (checkerboard pattern) used to character-
ize estimator performance when tracking a homogeneous
ARF response. Figure is not to scale.

C. Implementation

Eqn. (9) is solved as a recursive, non-linear minimiza-
tion problem, where the negative of (9) is minimized
per iteration [15]. The algorithm was implemented in
MATLAB (The MathWorks Inc., Natick, MA) using
the unconstrained minimization routine fminunc and a
quasi-Newton, unguided line-search. The algorithm is as
follows:

1) For each kernel m, calculate the initial displace-
ment estimate and cross-correlation coefficient, us-
ing a tracking kernel of length N , a search region
of length S, and a normalized cross-correlation
estimator with parabolic, sub-sample estimation.
This estimate is also used to initialize the log-prior.

2) Estimate the noise power at each kernel m using
(8) and the geometric mean of the two signal
powers (computed over a kernel of length N
centered on kernel m) as the estimate for σ2

d

3) Estimate the log-likelihood by computing the SSD
between the two RF signals after shifting the
tracked signal s2 by −τ0 back towards the refer-
ence signal s1, using Fourier-domain interpolation
to compute the sub-sample shift. Each SSD is
computed over a kernel of length N .

4) Estimate the log-prior for kernel m using spatially-
adjacent displacements (τj). The absolute value
term, |τ0 − τj |p, is approximated by the smooth
function(

√
((τ0 − τj)2 + ε))p, where ε is a small

number [20].
5) Update the log-posterior and sum the negative log-

posterior over all M kernels.
6) Repeat steps (3) - (5) for a given number of

iterations or until reaching a convergence tolerance
on either the cost function (defined as TolFun
in fminunc) or the change in parameter values
(defined as TolX in fminunc).

D. Numerical Simulations

Estimator performance was evaluated in simulations
modeling the response of a 4.5 kPa, linearly-elastic,
isotropic phantom with a 3 mm embedded 32 kPa lesion
to an acoustic-radiation force excitation2. The simula-
tions were created using the simulation package Field
II and finite-element methods described previously by
Palmeri et al. for modeling the tracking of radiation-force
induced displacements within an elastic medium [26]–
[29]. Table I lists the parameters used in the simulations.

Two types of experiments were performed. To char-
acterize estimator performance when tracking displace-
ments in a homogeneous medium, 100 simulations with
independent speckle realizations were generated with
a f/2, 6.67 MHz, 67µs ARF excitation beam focused
at a point 1.8 cm into the phantom and offset 4.6 mm
laterally from the lesion center. To characterize estimator
performance for lesion visualization, a 2D ARFI image

2The lesion contrast for the simulation is not meant to be represen-
tative of a specific clinical imaging scenario. A wide range of lesion
contrasts exist clinically, some of which are smaller or larger than
the contrast selected here [21]–[25].



was created by translating the co-aligned excitation and
tracking beams across a 9.4 mm imaging field-of-view
to synthesize a 48-line ARFI displacement image (n =
25 independent speckle realizations). The simulated RF
data were downsampled from the Field II simulation
frequency of 1 GHz to 40 MHz, which is a typical scan-
ner sampling frequency. Thermal noise was modeled by
superimposing additive, white Gaussian noise (AWGN)
on the RF signals to achieve a SNR (denoted hereafter
as SNRT to represent the thermal SNR) of either 10 dB,
15 dB or 30 dB (4.5 kPa homogeneous data, relative to
the noiseless RF data). For the simulated ARFI lesion
data, the RF data were corrupted to an SNRT of either
10 dB or 30 dB. Fig. 1 shows the geometry of the 2D
ARFI scan as well as the location of the ARF excitation
and tracking beam used to simulate the ARF response
from a homogeneous, 4.5 kPa region of the phantom.

Table II summarizes the parameters for each estimator
(NCC, old Bayesian estimator, and proposed Bayesian
estimator). The simulated RF data were first upsampled
from 40 MHz to a base sampling frequency of 120 MHz.
For each estimator, the kernel length was defined as the
ratio of the sampling frequency (fs = 120 MHz) to the
center frequency (fc = 7 MHz), and then multiplied by
a constant (i.e. 2.73fs/fc). For the NCC estimator, the
RF data and kernel length were upsampled by a factor
of three to 360 MHz to compute the normalized cross-
correlation function; the coarse-lag estimate was refined
using sub-sample estimation. For the old Bayesian esti-
mator, the RF data and kernel length were upsampled by
a factor of nine to 1080 MHz to compute the noise term
SNRρ and to ensure the likelihood function was sam-
pled finely-enough to accurately construct the posterior
PDF. Parabolic sub-sampling was then used to refine the
coarse-lag, MAP estimate. For the proposed Bayesian
estimator, the RF data and kernel length were kept at
the base sampling frequency of 120 MHz to reduce the
computational time when computing the likelihood. To
further reduce the computational time for the Bayesian
estimators, the axial field-of-view was restricted from
approximately 0.5 cm to 2.5 cm, and the kernel-overlap
was reduced to approximately 74%. The NCC result was
cropped to the same field-of-view to facilitate compari-
son.

The proposed log-prior was computed using a two-
point neighborhood B that considers information from
adjacent kernels (i.e. the preceding and the subsequent
axial kernel, or the two nearest kernels for kernels
located at either edge), with a uniform weighting factor
(wj) of 0.5 [15]. Table II summarizes the parameter
space for p and λ. Unless otherwise indicated, the opti-
mization was run until reaching a user-specified number

of iterations (1000 iterations) or reaching a user-specified
termination tolerance (TolX, TolFun = 10−6).

TABLE I: ARF-Simulation Parameters

Parameter Value
Attenuation Coefficient 0.7 dB /MHz /cm
Probe bandwidth 50 %
Probe Focus 1.8 cm
Samp. Freq.
(Down-sampled) 40 MHz
Samp. Freq. (Simulation) 1000 MHz
Speed-of-sound 1540 m/s
Tracking Frequency (fc) 7 MHz
Tracking PRF 10 kHz

TABLE II: Estimator Parameters

Parameter Value
NCC

Kernel Length 2.73 fs/fc
Kernel Overlap 96 %
Samp. Freq. (Up-sampled) 360 MHz

Bayesian(Old)
α 4
Likelihood Kernel Length 2.73 fs/fc
Likelihood Kernel Overlap 74 %
Minimum Prior σ 10−5 ≤ σ ≤ 105 µm
Samp. Freq (Up-sampled) 1080 MHz

Bayesian(Proposed)
ε 10−6

Likelihood Kernel Length 2.73 fs/fc
Likelihood Kernel Overlap 74 %
p 1.05 ≤ p ≤ 2
Prior λ 10−5 ≤ λ ≤ 105 µm
Samp. Freq (Up-sampled, fs) 120 MHz

E. Selection of λ and σ

The majority of the results presented in this
manuscript characterize the parameter space of p and
λ (or σ in the case of the old estimator) in varying noise
environments. The parameters λ and σ in particular are
important as they establish confidence in using additional
information when constructing the log-posterior (or pos-
terior) probability.

To investigate the relationship between λ, p, and
SNRρ for the proposed estimator and σ and SNRρ for
the old estimator, fifty independent speckle realizations
were chosen from the 4.5 kPa data. The reference data
and the tracked data from the peak-displacement time-
step (0.3 ms after ARF excitation) were then corrupted
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Fig. 2: ARFI displacement profiles (units are in µm)
as a function of axial depth from one realization, for
the NCC estimator (light-gray, dashed) and the proposed
Bayesian estimator (p = 2, red) for three prior widths:
(a) λ = 105, (b) λ = 3.16 × 10−2, and (c) λ =
10−5 µm. The mean displacement profile of the NCC
data averaged over the other 99 realizations is shown
in blue. (d) The minimization of the cost function vs
iteration (normalized by the initial value) for the results
shown in a-c.

with AWGN to a final SNRT of either 10, 12, 14,
16, 18, 20, 22, 25, 30, or 40 dB. Brent’s minimization
algorithm [14], [30] was then used to minimize the
mean-square displacement error between the estimated
Bayesian displacement profile and the true displace-
ment profile (mean, noise-free NCC displacement profile
averaged over all 100 realizations, not including the
realization being analyzed) in order to find the optimal
value of λ or σ for each realization3. Brent’s algorithm
was run using a tolerance of 10−5. The following power-
law model was then fit to the optimized λ or σ data using
a non-linear regression with bi-square weighting

λ = axb + c, (10)

3McCormick et al. also use Brent’s algorithm to investigate their
optimal parameter [14].

10 20 30
0

0.05

0.1

0.15

O
p
ti
m

a
l 
λ
 [

µ
m

]

SNR
ρ
 (dB)

(a) Fit (λ) vs SNR
ρ
 (Proposed, p = 2)

10 15 20 25 30
0

0.05

0.1

O
p
ti
m

a
l 
λ
 [

µ
m

]

SNR
ρ
 (dB)

(b) Fits (λ) vs SNR
ρ
 (Vs p)

 

 
p=1.05

p=1.25

p=1.5

p=1.75

p=2

Fig. 3: (a) Optimal λ (gray dots, n = 50 realizations, 10
noise cases) plotted against the median axial SNRρ, for
p = 2. The black line shows the regression fit for the
power-law model described by (10). The black and gray
dashed lines show the upper and lower 95 % prediction
and confidence intervals for the fit, respectively. (b)
Power-law fits as a function of p. Note that in (8) and
(10), SNRρ is linear. Here, the data are shown with
SNRρ defined on a decibel scale to aid visualization.

where x is the median axial SNRρ as defined by (3),
and a, b, c are the parameters estimated by the model fit.

F. Baseline Error Metrics

Estimator performance was quantified by calculating
the bias, variance and mean-square error using the ho-
mogeneous, 4.5 kPa data and the following equations

bias = E[τ0 − τt]
variance = E[(τ0 − τt)2]− bias2

MSE = variance+ bias2

(11)

where τo is the estimated displacement and τt is the true
displacement. The finite-element model displacements
were not used as the true values as ultrasonic displace-
ment tracking of ARF-induced displacements typically
underestimates the true value [27]. Instead, the mean
NCC displacement of all realizations (not including the
realization being analyzed) of the noise-free data was
used as the true estimate. Error metrics were calculated
for displacement profiles obtained 0.3 ms after ARF exci-
tation (approximate time of the peak-displacement) over
a range of λ and p. Error metrics were also computed
as a function of time following the ARF excitation,
using (10) to select λ for the proposed estimator and
σ for the old estimator. The results are compared to
the NCC data, as well as the NCC data filtered with a
one-dimensional median filter. Although median-filtered
is commonly performed in two dimensions, the NCC
data is only median-filtered axially as the proposed
Bayesian estimator is restricted to the axial dimension.
The chosen kernel size (approximately 0.6 mm) is more
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Fig. 4: (a) The mean, axial displacement profile for the
previous Bayesian estimator (n =100 realizations) for
varying σ (red). The results demonstrate how the false-
causal implementation of the prior biases the estimate
towards the previous depth, shifting the peak displace-
ment deeper. (b) The same as (a), but for the proposed
Bayesian estimator. Unlike (a), the peak displacement is
not shifted axially. (c) Example results for one realization
for NCC (gray), the old Bayesian estimator (red), the
proposed Bayesian estimator (blue) and the mean NCC
result (black). σ and λ are selected by (10)

than three times larger than the Bayesian neighborhood
and is representative of median filter kernel lengths (axial
dimension only) used previously in ARFI imaging (mean
0.43 mm, range (0.17 mm - 0.9 mm) ) [31]–[35].

G. Lesion Image Quality

ARFI 2D lesion images were created with each esti-
mator (NCC, NCC with median filtering, old estimator,
and proposed estimator), using (10) to select λ or σ for
the Bayesian estimators. Lesion contrast and contrast-to-
noise were then calculated as

Contast =
µo − µi
µo

, CNR =
|µo − µi|√
σ2
o + σ2

i

, (12)

where µi, µo, σ2
i and σ2

o are the displacement mean and
variance inside and outside the lesion, respectively. A
3 mm diameter circle was used to define points inside
the lesion, while a 3 mm circle centered at the same
depth but offset laterally was used to define points
outside the lesion. The same regions were used for all
measurements.

Lesion-edge resolution was quantified using an ap-
proach similar to one proposed by Rouze et al. [36],
where two sigmoid functions are fit to data along an

axial line through the center of the lesion,

τ(y) = (τn − τi)

(
1

exp (n−n1)
W1

+ 1

)
+ ...

(τf − τi)

(
1

exp −(n−n2)
W2

+ 1

)
+ τi,

(13)

where y is the axial depth, τi is the displacement inside
the lesion, τn and τf are the displacements outside the
lesion at the near and far lesion boundaries, respectively,
n1 and n2 are the midpoints for the background-to-
lesion and lesion-to-background transitions, respectively,
and W1 and W2 are windowing parameters that describe
the width of each transition. The 80 %-to-20 % lesion-
to-background transition distance is given as

T80,20 = 2ln(4)W1,2, (14)

which describes the distance for the sigmoid function
to transition from 80 % to 20 % of the background
displacement across a given boundary [36]. The width
of the lesion is estimated as the difference between the
two transition midpoints n2 and n1.

H. Execution Time

Execution time was measured by implementing each
estimator in MATLAB, using a Dell Precision T5600
Intel Xeon 3.1 GHz computer with 16 GB memory, and
recording the time it takes for each estimator to calculate
the ARF-induced displacement between two RF lines.
Execution time (per realization) was measured for each
method over 100 realizations of the 10 dB and 30 dB
SNRT RF data. The parameters listed in Table II were
used, except that the kernel overlap was decreased for
the NCC estimator to the value used for the Bayesian
estimators (i.e. all estimators used the same number of
kernels). Equation (10) was used to automatically select
λ or σ for the two Bayesian estimators. Execution time
was also quantified for the proposed Bayesian estimator
as a function of the number of kernels used to estimate
the displacement between two RF lines (30 dB SNRT ,
one phantom realization). For the experiment quantifying
execution time as a function of the number of kernels,
the maximum number of iterations was increased to 2000
to ensure convergence for datasets using more kernels.

I. In vivo Example

ARFI displacement images of a cardiac, radio-
frequency (RF) ablation in a canine model were made
with each estimator (NCC, median-filtered NCC, previ-
ous and proposed Bayesian) in order to evaluate in vivo
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Fig. 7: Displacement vs time images for the (a) mean NCC, (b) NCC, (c) median-filtered NCC, (d) previous
Bayesian estimator, (e) proposed non-Gaussian estimator (p=1.05) and (f) proposed Gaussian estimator (p=2) with
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improvement and match favorably with the mean NCC result. The Gaussian results (p = 2) have a smoother axial
profile.

image quality (imaging data courtesy of Dr. Stephanie
Eyerly and Dr. Patrick Wolf, Duke University, Durham,
NC). The data were acquired under an open-chest prepa-
ration as described in Eyerly et al. [37]. For the NCC and
the Bayesian estimators, the same parameters described
in Table II were used, except the kernel length and
kernel overlap factor are slightly smaller due to the
higher center-frequency (fc=8 MHz). Eqn. (10) was used
to automatically select λ or σ for each location, and p
was set to either 1.05 or 2.

III. RESULTS

A. Simulation Results - 4.5 kPa Homogeneous Region

Fig. 2(a-c) shows characteristic ARFI displacement
profiles (30 dB SNRT , 0.3 ms after excitation, one re-
alization) for the NCC estimator (gray), the Bayesian
estimator when using an appropriately-selected λ (red,
Fig. 2(b)), and the Bayesian estimator when λ is selected
from either extreme (red, Fig. 2(a, c), overly-broad and
overly-narrow λ). The mean NCC displacement profile
averaged over the other 99 realizations is shown in blue.
The results illustrate that for an overly-broad prior dis-
tribution (Fig. 2(a), very large λ)—where the prior has a
nearly-uniform probability distribution and little relative

weight is assigned to prior information—the two esti-
mators produce nearly identical results. For an overly-
narrow prior distribution (Fig. 2(c), very small λ)—
where little relative weight is placed on the data—the
cost function becomes minimized when every estimate
in the prior term has the same value, biasing all the es-
timates toward one value. In this example, the Bayesian
result for a prior of 10−5 µm (6.683±3.7×10−5 µm,
averaged axially) converges to the axial average of the
NCC data (mean axial displacement 6.684µm). When
λ is appropriately-selected (Fig. 2(b)), the Bayesian
estimates (red) have lower noise and match well with the
mean displacement profile. Fig. 2(d) shows the iteration
history for the cost function (normalized by the initial
value) and suggests that most of the minimization of the
cost function occurs within ten iterations.

Fig. 3 shows an example of how λ (or σ) can be
determined empirically as a function of the noise term
SNRρ. Fig. 3(a) shows the optimal λ (gray dots) that
minimizes the mean-square, axial displacement error
(relative to the mean, noiseless NCC data) for p=2 for
each realization. The black line shows the estimated
power-law fit to this data as a function of the median
SNRρ. The dark gray and black dashed lines show the
parameter confidence and prediction intervals for the fit,
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respectively. The parameter λ (or σ) is then estimated
by measuring the median SNRρ for a given dataset,
and using the power-law relationship (10) to determine
λ (or σ). Fig. 3(b) shows the power-law fits for λ as
a function of p for the proposed estimator. Table III
lists the fit parameters to (10) for the previous and
proposed Bayesian estimators, where x is the median
SNRρ measured for a given dataset.

TABLE III: Power-Law Fit Parameters for Selecting λ
or σ

Bayesian σ = axb + c
(Old) a b c

11.55878 -0.52161 0.79651
Bayesian λ = axb + c
(Proposed) a b c
p=1.05 0.16377 -0.57473 0.00109
p=1.25 0.19321 -0.54472 0.00325
p=1.5 0.20297 -0.47737 0.00575
p=1.75 0.19788 -0.41176 0.00781
p=2 0.19195 -0.35983 0.00962

Fig. 4 motivates the selection of the proposed
Bayesian estimator over the previous estimator. Fig. 4(a)

demonstrates how the false-causal implementation of the
previous estimator biases the displacement towards the
previous depth’s estimate for increasingly-narrow priors,
shifting the peak displacement axially and distorting the
shape of the displacement profile. Fig. 4(b) demonstrates
that by removing this false-causality and appropriately
reformulating the problem, the location of the peak
displacement is no-longer shifted axially, and narrower
priors can be used without biasing the result away from
the true displacement. Fig. 4(c) shows characteristic
displacement profiles for both Bayesian estimators when
using (10) to select the optimal λ or σ. Fig. 4(c) clearly
demonstrates the superior performance of the proposed
estimator over the previous estimator.

Fig. 5(a-c) shows the trends in peak bias, variance,
and mean-square error (MSE) of the proposed estimator
for data located within the region of peak displacement.
The results are plotted against the parameter λ for two
different values of SNRT . The diamonds denote the
bias, variance and MSE when using (10) to select λ au-
tomatically. The matched results for the NCC estimator
are shown in gray or black. Fig. 5(d) shows the MSE
(zoomed-in for visualization) as a function of p and λ
for a fixed noise case (30 dB SNRT ) while Fig. 5(e)
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Fig. 9: Example 2D ARFI images (units are in µm) for (column b) NCC, (column c) NCC with median filtering,
(column d) the previous Bayesian estimator, (column e) proposed estimator with p = 1.05, and (column f) proposed
estimator with p = 2. (column a) The mean NCC result (n=25 realizations). Each image shows the entire dynamic
range of the data to avoid artificially-saturating the image and represents the image that would be shown with no
a prior knowledge of the true displacement range, which is typically not available clinically. Units are in µm. The
proposed Bayesian images have lower variability compared to the NCC images, where the poor contrast-to-noise
ratio reduces the apparent visibility of the lesion. Median-filtering or using the previous Bayesian estimator increases
the visibility of the lesion compared to NCC, but does not reduce the jitter to the same level as the proposed method.
For the 10 dB SNRT dataset, the previous estimator (d) is unable to correct several of the negative false peaks
at the starting depth of the dataset, due to a lack of prior information before those points, limiting its qualitative
performance. The non-Gaussian (p = 1.05, column e) images compare favorably to the mean NCC result, while
the Gaussian prior images (p = 2, column f) are blurred along the lesion edge.

shows the MSE as a function of λ and noise for a fixed
prior shape (p = 2). The colored diamonds show the
corresponding MSE when using (10) to select λ. Fig.
5(f) shows the distributions of the automatically-selected
λ.

Fig. 5(a-c) demonstrates the dependence of estimator
MSE on bias and variance. For a broad prior distribution
(i.e. large λ), the Bayesian MSE is mostly determined
by the variance, and for SNRT = 30 dB, the error
metrics are similar between the estimators. A larger
bias is observed in the 10 dB SNRT data for both
estimators while a larger variance and MSE is observed
for the Bayesian estimator, which is hypothesized to
be due to the lower-performance of the implemented
sum-square difference algorithm, compared to the NCC
calculation. As the prior distribution is made narrower–
placing more emphasis on prior information–the MSE
of the Bayesian estimator decreases with the variance,

reaching an optimal value that is dependent on p and the
noise. The larger MSE observed for the 10 dB SNRT
data when using an overly-broad prior is a small trade-
off compared to an order-of-magnitude decrease in MSE
when using an appropriately-weighted prior distribution
(Fig. 5(c)).

Fig. 5(d,e,f) demonstrates the robustness of (10) for
selecting λ appropriately in order to minimize the MSE
for varying p and noise. The results show that an
approximately one-order of magnitude improvement in
MSE can be achieved when selecting λ with (10), and
that this error reduction occurs with a large decrease in
variance (Fig. 5(b)) accompanied by a small increase in
bias (Fig. 5(a)). Fig. 5(d,e) demonstrates that there is
an approximately an half order-of-magnitude range in λ
that provides an order of magnitude in improvement in
MSE, and at least an order-of-magnitude range in λ that
reduces the MSE by a factor of two. Fig. 5(d) illustrates
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with median-filtering, c) the previous estimator, and d)
the proposed estimator with p=1.05 for the 30 dB SNRT
data. The images are shown with the same dynamic range
as the mean, 30 dB SNRT displacement data (Fig. 9(a))
in order to compare lesion features between estimators.
Note that the data is now saturated. While the lesion
is visible in all images, the proposed Bayesian image
exhibits lower measurement variability throughout the
field-of-view. The apparent contrast and edge resolution
are similar in all the datasets. Subtle streaking is apparent
in the proposed Bayesian image, due to the 1D nature
of the algorithm.

the trend between performance and prior shape, where
a lower value of p broadens the prior width, requiring a
smaller value of λ to achieve equivalent performance
compared to a more Gaussian-like p. Fig. 5(e) illus-
trates the trend between performance and noise, where
narrower priors are required when optimizing MSE for
cleaner data. Fig. 5(f) shows that the distribution in the
selected λ is small. The results illustrate that it is not
just the prior width that is important for minimizing
MSE, but rather the prior width and shape in relation
to the likelihood distribution of the data should both be
considered in order to optimize performance.

Fig. 6 compares the MSE for the proposed Bayesian
estimator (using (10) to select λ) as a function of depth
for varying p and SNRT , against NCC, median-filtered
NCC, and the previous Bayesian estimator (optimal
σ). The results demonstrate that for any SNRT , the
proposed Bayesian estimator reduces the MSE for most

depths by approximately a half-order to one-order of
magnitude compared to NCC. The exception is at the
edges, where the Bayesian MSE is larger, and for some
realizations (∞ dB and 30 dB SNRT ), exceeds the NCC
MSE. The results also demonstrate the superior perfor-
mance for the proposed Bayesian estimator to median-
filtered NCC as well as the previous Bayesian estimator.
For higher SNRT , the results show that there is a strong
spatial-dependence with depth for the MSE, with the
largest MSEs observed within the region of peak axial
displacement, which is consistent with a shearing-driven,
decorrelation of the tracked RF data. For lower SNRT ,
the spatial dependence of the MSE with depth is less
apparent, suggesting that the dominant noise mechanism
is from thermal noise rather than shearing.

Fig. 7 shows how the displacement profile changes as
a function of elapsed time following the ARF excitation
for each estimator, with the mean NCC result (averaged
over 100 realizations) shown for comparison. Each im-
age shows the entire dynamic range of the data to avoid
artificially saturating the data and characterizes the full
performance of each estimator. The image quality for the
proposed estimator is qualitatively better for both noise
realizations and prior shapes compared to NCC, median-
filtered NCC, and the old estimator. The Gaussian prior
images (Fig. 7(f, l)) appear to have a smoother axial
profile and compare more favorably to the mean NCC
result than the non-Gaussian prior images (Fig. 7(e, k))
images.

Fig. 8 shows the MSE as a function of axial depth
and recovery-time, for two different noise realizations.
The results demonstrate the robustness of the proposed
Bayesian estimator to varying noise environments and
changes in axial-displacement profiles, and show that
the improvement in MSE can be maintained throughout
the period of displacement recovery. For high SNRT ,
the largest MSEs for the proposed Bayesian estimator
are either localized at the image edges or follow the
location of peak displacement (and thus the location of
peak shearing) as it propagates toward the transducer. For
a low SNRT , the spatial-dependence of MSE on axial
position is less clear for the NCC estimator and is smaller
for the previous and proposed Bayesian estimators. Both
results are consistent with displacement-estimate data
degraded primarily by thermal noise.

B. Simulation Results - Lesion

Fig. 9 shows characteristic lesion images for NCC,
median-filtered NCC, the previous Bayesian estimator,
and the proposed Bayesian estimator for two prior
shapes. Each image shows the entire dynamic range of



Mean NCC Data
(a) 30dB SNR

T

2 mm

0 2 4 6
0

5

10

D
is

p
la

c
e
m

e
n
t 

[µ
m

]

Distance [mm]

(b) Data (Light−gray) with Sigmoid Fit (Black)

Lesion Width

2ln(4) W
1

2ln(4) W
2

80%−20%
Transition

0 1 2 3 4 5 6 7
0

5

10

D
is

p
la

c
e
m

e
n
t 

[µ
m

]

Distance [mm]

(c) Example Bayesian (New) Displacement Profiles vs p

 

 

NCC

p = 1.05

p = 2

Fig. 11: (a) Example lesion image showing the regions
used in the contrast and contrast-to-noise ratio analysis,
as well as the axial line (white) used for quantifying edge
performance. (b) Double-sigmoid (black dashed line) fit
to the data (gray) for the image shown in (a). The lines
illustrate the measurements extracted from the fit. (c)
Displacement profiles through the center of the lesion (as
denoted by the line in (a)) from one simulation dataset.
The non-Gaussian prior shape (p = 1.05, solid black
line) has better edge-preservation performance than the
Gaussian prior shape (p = 2, gray dotted line),which blurs
the edges.

each dataset to avoid artificially saturating the data. The
figure shows the images that would be made with no a
prior knowledge of the true displacement range, and al-
lows for a qualitative comparison of the full performance
of each estimator. The proposed Bayesian images have
noticeably lower variability than the corresponding NCC
images, where the high variability within the NCC image
reduces the apparent visibility of the lesion for both noise
realizations. Median-filtering the NCC data or using the
previous Bayesian estimator improves the image qual-
ity considerably, but does not reduce the measurement
variability as much as the proposed Bayesian estimators,
particularly outside the lesion. The results also show the
effect of p on feature preservation. For a Gaussian prior,
the lesion margins appear to be more blurred than the
corresponding non-Gaussian results, where the lesion-
margin is sharper and better defined.

Fig. 10 shows similar data as in Fig. 9, but uses the
same dynamic range for all images. Here, the dynamic

range is chosen based on the maximum and minimum
values of the mean displacement data (30 dB SNRT ) in
order to better compare specific lesion features between
the proposed estimator, the previous estimator, NCC, and
NCC with median filtering. Unlike in Fig. 9, the images
in Fig. 10 are saturated. The figure highlights the ability
of the proposed estimator—when using an appropriately-
selected prior shape (p=1.05)—to reduce measurement
variability without a significant loss of edge resolution.
The figure also demonstrates the 1D nature of the algo-
rithm, which introduces a subtle, vertical streaking in the
image as the method only considers prior information in
the axial dimension.

Fig. 11 show the regions used in the lesion data analy-
sis, an example of the double-sigmoid fit used to evaluate
lesion width and edge resolution, and a representative ex-
ample of the displacement profile through the lesion for
the proposed estimator using two different prior shapes.
The results demonstrate that the proposed Gaussian prior
(p = 2) blurs the lesion edge noticeably compared to the
non-Gaussian, p = 1.05 prior. Fig. 12(a,b) shows that
the proposed Bayesian estimators have lower contrast–
especially at 10 dB SNRT –but significantly higher CNR
than the NCC, median-filtered NCC, and the previous
Bayesian estimator.

Fig. 12(c,d,e) shows the edge-performance and esti-
mated lesion width for each estimator. Only the 30 dB
SNRT data are shown. The fits did not model the
10 dB SNRT data well enough to allow for the edge
resolution to be quantified consistently. The results show
that the proposed Bayesian estimator using a Gaussian
prior (p=2) has much worse edge resolution compared
to the other methods, while the proposed non-Gaussian
estimator (p=1.05) preserves the lesion edges. Our initial
expectation was that a Gaussian prior would outperform
a non-Gaussian prior both in terms of contrast and
CNR, but would have worse edge-preservation due to
the quadratic difference penalty in the prior. Here, the
data shows that the contrast and CNR performance are
similar between the proposed priors for 30 dB SNRT
with a slight loss in contrast at 10 dB SNRT , while the
non-Gaussian prior has much better edge resolution. This
is an important result because it suggests that high-spatial
frequencies can be preserved by the non-Gaussian prior,
without a significant loss in CNR performance for high
SNRT , and only a modest loss in contrast performance
at a low SNRT .

C. Execution Time

Table IV shows the execution time for each method,
with the statistics showing the mean and standard devi-
ation over 100 realizations. For the proposed Bayesian
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boundary, background-to-lesion transition distance, (d) far-boundary, lesion-to-background transition distance, and
(e) lesion width for the proposed Bayesian estimator (p = 1.05, dark gray), the proposed Bayesian estimator (p
= 2, medium gray), the previous Bayesian estimator (light, medium gray), median-filtered NCC (light gray), and
NCC (white). Outliers are marked by crosses. For (c), (d), and (e), results are only shown for SNRT = 30 dB.
The sigmoid-fits were found to be unreliable for the 10 dB SNRT data, particularly for NCC, and were excluded
from analysis.

estimators, the number of iterations to reach convergence
are also shown. The results show that the MATLAB
execution time for the proposed Bayesian estimators
are several orders of magnitude slower relative to the
previous Bayesian estimator as well as NCC, which has
been shown previously to be capable of achieving run-
times on the order of milliseconds for a highly-optimized
implementation in C [38]. The results also show that
using a strongly non-Gaussian prior (p=1.05) is more
computationally-expensive than a Gaussian prior (p=2).

Fig. 13(a) shows how the execution time changes as a
function of the number of Bayesian kernels used to com-
pute the final displacement estimate. Fig. 13(b,c) shows
the final estimated displacement for the largest (n=1039
kernels) and smallest kernel overlap (n=87 kernels).
The NCC results are also shown for comparison. The
results suggest that the execution time for the proposed
estimator grows at an order of approximately n2 with
respect to the number of kernels, and that the speed
penalty can be mitigated to a degree by reducing the
number of kernels used to compute the estimate. The
results also show that execution times below 10 seconds

TABLE IV: Execution Time

10 dB Data (n=100)
Estimator Execution Time (s) Iterations

NCC 0.061±0.005 -
Old 0.218±0.003 -
New, p = 1.05 211.2±13.9 340±22
New, p = 2 44.1±2.7 162±10

30 dB Data (n=100)
Estimator Execution Time (s) Iterations

NCC 0.062±0.006 -
Old 0.217±0.005 -
New, p = 1.05 148.9±11.6 327±26
New, p = 2 34±2.2 123±8

are possible for a MATLAB-only implementation and a
Gaussian prior.

D. In vivo Example

Fig. 14 shows in vivo ARFI images of a radio-
frequency ablation performed in a canine model. In each
ARFI image, the ablation lesion is visible as a circular
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Fig. 13: (a) Execution time for the proposed Bayesian
estimator (p = 1.05, 2) as a function of the number
of Bayesian kernels used to estimate the displacement
between two RF lines with an SNRT of 30 dB. The
results show that the execution time increases approx-
imately on the order of n2 with increasing number of
kernels. (b,c) The displacement result when using (b,
black) 1039 Bayesian kernels and (c, black) 87 kernels.
The NCC result for the same number of kernels is shown
in light-gray.

region of lower displacements on the left side of the
image, while the non-ablated, right-ventricle appears as a
region of higher-displacements to the right of the lesion.
The proposed Bayesian images appear to have less
axial variability than the corresponding NCC, median-
filtered NCC, and previous Bayesian images, particularly
outside the lesion.4 The proposed Bayesian image when
using a Gaussian prior (p = 2) shows slightly more
blurring along the lower-right lesion margin than the
corresponding non-Gaussian (p = 1.05) prior image. All
five images show an alternating, vertical banding artifact
due to the parallel-RX tracking scheme used to acquire
the data [39]; this artifact is more apparent in the two

4Here, the dynamic range is chosen from data within the regions
used for the contrast and CNR analysis to ensure that only dis-
placements within the ventricle—and thus actual tissue—are used
to scale each image and allow for a qualitative assessment of the full
performance of each estimator.

Bayesian images, where the banding is enhanced by the
lower measurement variability of the proposed Bayesian
estimator. The contrast of the lesion for the two proposed
Bayesian estimators (0.8464 for non-Gaussian prior, and
0.8463 for the Gaussian prior) is comparable to the con-
trast obtained with NCC (0.8460), median-filtered NCC
(0.8461), and the previous Bayesian estimator (0.8449),
while the contrast-to-noise ratio—4.759, 5.643, 5.426.
6.250, and 6.466 for the NCC, median-filtered NCC,
previous Bayesian estimator, non-Gaussian proposed,
and Gaussian-proposed prior images—is higher.

IV. DISCUSSION

The results demonstrate the improvements in estimate
quality that can be realized with the proposed estimator,
and show the algorithm’s robustness to a range of noise
environments and imaging scenarios. Overall, the data
show that the proposed Bayesian approach using (10)
to select the prior width is superior in terms of mean-
square error (MSE) and contrast-to-noise ratio to the
previous Bayesian estimator, NCC, and median-filtered
NCC, with comparable performance in edge-resolution
when using a non-Gaussian, p = 1.05 prior. Compared
to previous Bayesian approaches, the results demonstrate
that the proposed framework is appropriate for small-
displacement, elasticity imaging, [14] and show that
significant improvements can be realized be eliminating
the false-causal limitation of the previous prior, and
replacing the Bayesian framework with an adaptive,
iterative approach [13].

While Fig. 5 shows that a wide range of p and λ
exist in which improvement can be realized, the op-
timal choice of the estimator parameters are likely to
be application-specific. For imaging applications such
as ARFI imaging in which the preservation of high-
frequency imaging features is crucial, a non-Gaussian
prior is an attractive choice due its ability to preserve
edges with comparable contrast and CNR performance
to a Gaussian prior. For applications such as SWEI
imaging in homogeneous tissue where the main goal is
to characterize the propagation velocity and dispersion
of the excited shear-wave, a near-Gaussian or Gaussian
shape may be a more appropriate choice for the prior,
given the faster computational time of the algorithm
and its tendency to more accurately preserve the axial
displacement profile of a homogeneous region (see Fig.
7).

For any constrained estimator, the ability to select
the estimator parameters automatically is advantageous,
both for ease-of-implementation as well as robustness to
a range of imaging scenarios. The lack of insight into
how to select λ based on the underlying data was a
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major limitation in our initial investigation, making the
method tedious to use [15]. Figs. 5, 7, 8, and 9 suggest
that selecting λ with (10) provides a reasonable result
that is robust to noise as well as changes in the initial
prior shape. Fig. 5 does suggest that the selected λ will
introduce a small amount of bias into the estimate within
the region of peak displacement, which is not surprising
given that λ is optimized and selected based on the
median noise over the entire dataset. For applications
in which no amount of bias can be tolerated, Fig. 5
gives guidance on how λ can be shifted appropriately
to minimize the estimator bias while maintaining a
comparable mean-square error.

The data in several figures (Figs. 7, 9, and 14) were
all presented using the full dynamic range resulting from
each estimator, in order to show the complete perfor-
mance of each estimator. In some cases, it can be more
convenient to compare the lesions on a constant dynamic
range, which is shown in Fig. 10. In this case, the four
images were all displayed scaled between the minimum
and maximum of the mean of the 30 dB SNRT NCC
data sets. Unfortunately, this information is not available
clinically and setting an appropriate dynamic range for
a qualitative ARFI image is challenging. One of the
benefits of the proposed algorithm as shown in Figs.
7, 9, and 14 is that images can be made using the
full dynamic range of the data without worrying about
suppressing information or washing out the image. This
characteristic is important for clinical workflow because
our results suggest compelling images can be created
with no a prior knowledge of the displacement dynamic

range, which likely varies with imaging application and
between patients.

Further improvements are possible. Our expectation
was that the MSE of the proposed Bayesian estimator
would have little spatial-dependence with depth. Fig.
6 shows that while the algorithm can reduce the MSE
significantly, Fig. 5 and Fig. 8 suggests that the method
is unable to reduce the peak-excitation MSE below
several µm2—independent of thermal noise—and that
the largest MSEs are localized either at the image-edge
or in areas of peak-shearing. Ideally, the noise model
should fully account for both signal decorrelation as well
as thermal noise; the data suggests that the estimator
can only recover estimates degraded by shearing-induced
decorrelation up to a certain point. One weakness of the
proposed method is that the noise term does not consider
correlated, colored-noise. Increased performance can
likely be realized with a different noise model that better
accounts for correlated-noise within the displacement
estimate data, or with a prior scheme that locally-adapts
the prior width based on the local noise, rather than using
a globally-determined, median estimate. Additionally,
because the algorithm only considers information in the
axial dimension, the algorithm’s performance can vary
in the lateral dimension, resulting in a subtle streaking
pattern observed in the low SNR images in Fig. 9(e)
and (f). It is possible a more optimal result could be
obtained with a 2D implementation that considers prior
information from both spatial dimensions.

The presented study primarily focuses on the parame-
ters p and λ due to their importance in scaling the weight
of additional information relative to the data. While it is



possible to study the effect of other estimator parameters
such as Bayesian neighborhood size and the spatial-
separation between Bayesian kernels, our experience so
far has been that many of these parameters are co-
dependent and appear to resample a scaled or shifted
version of the prior shape and prior width parameter
space. For example, the Bayesian framework presented
here assumes independence between neighboring pixels
and there is likely some degree of statistical dependence
between Bayesian kernels for the presented data, given
a kernel-separation distance of approximately 80µm
and an expected speckle-correlation length of several
hundredµm. If the distance between adjacent Bayesian
kernels is decreased, the increased statistical dependence
between adjacent kernels can be accounted for when
selecting λ. This is illustrated in Fig. 13(b-c), where the
number of Bayesian kernels used for the estimation in
Fig. 13(b) are approximately twelve times greater than
the number of kernels used to make the image in Fig.
13(c). In this case, nearly-identical results are obtained
between the two datasets by simply reducing the λ used
in Fig. 13(b) by approximately a factor of 12.

While the proposed method is appropriate for any
displacement estimation task, the high computational-
time of the optimization in its current form likely
restricts the method to off-line processing rather than
real-time displacement estimation. In particular, appli-
cations that involve off-line, model-based reconstruc-
tion of the viscoelastic or elastic parameters from the
raw, displacement data—where displacement accuracy
likely impacts reconstruction performance (i.e. viscoelas-
tic SWEI imaging)—or are SNR-limited (i.e. deep ab-
dominal ARFI and SWEI imaging) may benefit from the
technique. While Fig. 13 shows that the computational
time can be mitigated by simply reducing the number of
the kernels used in the estimation, it is likely that this
choice will be application specific. A greater number
of kernels may be more desirable for ARFI imaging
than group-velocity SWEI estimation, where the focus is
on tracking the time-of-flight of the propagating wave,
rather than imaging detailed structures. Future work will
focus on increasing the computational efficiency of the
algorithm. The current, non-parallel, MATLAB imple-
mentation is computationally-slow and it is likely that
a multi-threaded, C/OpenCL or GPU-based implemen-
tation could help offset the computational penalty and
make the method more suitable for real-time processing.

V. CONCLUSIONS

We have presented a new framework for Bayesian
motion estimation that combines a generalized-Gaussian
Markov Random Field prior with an empirical

parameter-selection process to estimate radiation-force
induced small-displacements. The method allows for
fine-tuning of the prior shape to accommodate a range
of elasticity-imaging applications (i.e. ARFI imaging
vs SWEI velocity estimation). The results demonstrate
that significant improvements in estimate quality can
be realized for small-displacement, elasticity imaging
applications.
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