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1.  Introduction

The goal of delay and sum (DAS) beamforming is to apply delays and amplitude weights to received sensor 
signals such that waves coming from one direction are reinforced during summation relative to waves coming 
from other directions (Johnson and Dudgeon 1993). Usually these delays and amplitude weights are static and do 
not depend on the received data. In contrast, adaptive beamformers adjust the beamforming process depending 
on the received signals (Flax and O’Donnell 1988, Nikoonahad and Liv 1990, Li and Li 2003, Dahl et al 2006, 
Holfort et al 2009, Byram and Jakovljevic 2014, Byram et al 2015). In one type of adaptive imaging, a near field 
phase screen is used to model wavefront aberration due to sound speed inhomogeneities. After estimation, this 
phase screen is used to adjust the focusing delays (Flax and O’Donnell 1988, Nikoonahad and Liv 1990, Dahl et al 
2006). In another adaptive technique, the covariance of the received signals is used to select the amplitude and 
phase weights to suppress waves coming from directions other than the look direction (Holfort et al 2009).

Recently, several approaches were investigated for using deep neural networks (DNNs) for the purposes 
of ultrasound image reconstruction (Gasse et al 2017a, Luchies and Byram 2017, Perdios et al 2017). One of 
the primary challenges of this endeavor is that DNN training requires a well labeled training dataset, which is 
difficult to create or obtain for ultrasound channel data. The goal of Gasse et al was to use neural networks to 
reduce the number of transmit events needed for synthetic aperture imaging (Gasse et al 2017b). A synthetic 
aperture method (i.e. coherent plane wave compounding) was used to create an ultrasound channel dataset with 
improved resolution and contrast (Gasse et al 2017b). DNNs were then trained to produce images with similar 
image quality improvements, but using many fewer transmit events. The disadvantage of this approach is that 
image quality is limited by the image quality using synthetic aperture methods.

We developed a method that relied on simulation tools to generate training data (Jensen and Svendsen 1992, 
Jensen 1996, Luchies and Byram 2018a, 2018b). The advantage of using linear ultrasound simulation tools is that 
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Abstract
This paper investigates practical considerations of training ultrasound deep neural network (DNN) 
beamformers. First, we studied training DNNs using the combination of multiple point target 
responses instead of single point target responses. Next, we demonstrated the effect of different 
hyperparameter settings on ultrasound image quality for simulated scans. This study also showed 
that DNN beamforming was robust to electronic noise. Next, we showed that mean squared error 
validation loss was not a good predictor for image quality for simulation, phantom, and in vivo scans. As 
an alternative to validation loss for selecting DNN beamformers, we studied image quality in physical 
phantom and in vivo scans and demonstrated that DNN beamformer image quality in these settings 
was correlated to DNN beamformer image quality in simulated images. These findings suggest that 
simulated image quality can be used to select DNN beamformers. Finally, we studied the effect of 
dataset size on DNN beamformer image quality in simulation, physical phantom, and in vivo scans. We 
interpret the results in terms of recent work on the scaling of deep learning. Overall, the results in this 
paper show that DNN beamforming has significant potential for improving B-mode image quality.
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they are fast and make it possible to generate as much training data as desired. The disadvantage of using simula-
tion is that the DNNs will be limited by the accuracy of the simulation tool. Our results showed that it was pos-
sible to train DNNs using simulations to produce image quality improvements in physical phantoms and in vivo 
scans (Luchies and Byram 2018a).

The DNN beamforming method that we developed was inspired by the aperture domain model image recon-
struction (ADMIRE) beamforming method that Byram et al developed (Byram and Jakovljevic 2014, Byram 
et al 2015, Dei and Byram 2017). ADMIRE poses beamforming as a nonlinear regression problem and requires a 
significant amount of computation to perform beamforming. A DNN is a prime candidate for solving nonlinear 
regression problems and most of the computation is completed during the training phase. The inference phase 
for DNNs can be fast.

The goal of this work was to use empirical studies to examine practical considerations of training DNN beam-
formers. Previously, we trained DNNs with the responses of single point targets (Luchies and Byram 2018a). In 
this work, we trained DNNs with the responses from multiple point targets and studied the effect of these differ-
ent training datasets on image quality. We extend our previous finding that mean squared error validation loss 
was not a good predictor for ultrasound image quality in simulation scans to physical phantom and in vivo scans 
(Luchies and Byram 2018b). We show that DNN beamformer image quality of simulated images was correlated 
with experimental and in vivo image quality and proposed selecting DNN beamformers based on simulated 
images instead of validation loss. We studied the noise suppressing ability of DNN beamformers. Finally, we 
studied the effect of the training dataset size on DNN beamformer image quality.

2.  Methods

We briefly review the DNN beamformer that we developed in the past and also discuss several innovations 
(Luchies and Byram 2018a).

2.1.  Frequency domain processing
The first step in the signal path was to convert the channel data to the frequency domain using a short-time 
Fourier transform (STFT). The STFT gate length was 16 samples (approximately one pulse length) and a 16 point 
DFT was used. The gate overlap was 90% and a rectangular window was used. A diagram showing the frequency 
domain processing by a set of DNNs is in figure 1.

2.2.  Neural networks
A DNN beamformer is a set of DNNs to process data for different DFT bins. In this work, a DNN beamformer 
consisted of three DNNs, each trained to process a different DFT bin. The DFT bins were for the transmit center 
frequency and the adjacent DFT bin on either side of this center frequency. These DFT bins covered the 20 dB 
bandwidth for the pulse-echo characteristics specified. If the sampling frequency were increased, the number of 
DNNs in the beamformer would also need to be increased to maintain the filtering of the entire 20 dB bandwidth. 
The remaining DFT bins were zeroed out when transforming back to the time domain, which is an approach 
used elsewhere (Byram et al 2015, Dei and Byram 2017).

We trained fully connected feed-forward multilayer networks to process aperture data and performed a 
hyperparameter search with parameters indicated in table 1. The hyperparameters were specified on a grid and 
random configurations of hyperparameters were selected for creating DNN beamformers. For a single DNN 
beamformer, all DNNs were trained with the same hyperparameters and model architecture. A total of 100 DNN 
beamformers were trained. A random grid search was selected in order to aid in identifying image quality trends 

Figure 1.  Diagram showing frequency domain processing by a set of DNNs indexed by frequency, k. N is the number of elements 
in the receive subaperture. sn(t) is the gated data for the nth channel. The input signals are a single gated depth of channel data. A 
discrete Fourier transform (DFT) transformed each channel signal into the frequency domain. �  indicates the real component and 
� indicates the imaginary component. Processed frequency domain data is transformed back into the time domain using an inverse 
discrete Fourier transform (IDFT) (Yang 2008).

Phys. Med. Biol. 64 (2019) 045018 (15pp)
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for the hyperparameters used for training DNN beamformers. Previously, we studied the effect of hyperparam
eters on mean squared error validation loss (Luchies and Byram 2018a). The goal of the hyperparameter search 
in this study was to study the effect of hyperparameters on ultrasound image quality.

Gradient descent is by far the most popular algorithm for training neural networks (Ruder 2016). In addition, 
the learning rate is widely viewed as the most important hyperparameter to tune when training neural networks 
(Goodfellow et al 2016). Adaptive learning rate methods, such as Adam (adaptive moment estimation), adjust 
the learning rate based on parameters themselves. The learning rate is increased for parameters with infrequent 
or small valued gradients and decreased for parameters with frequent or large valued gradients. We used Adam 
with the values suggested by Kingma et al, including α = 10−3 (learning rate), β1 = 0.9 and β2 = 0.999 (coef-
ficients used for computing running averages of the gradient and its square), and ε = 10−8 (a term to improve 
numerical stability of the gradient update) (Kingma and Ba 2015).

The DNNs used the rectified linear unit (ReLU) for the activation function (Glorot et al 2011). Mean squared 
error was used as the loss function during training. The weights of the network were initialized using the prob-
ability distribution given by Glorot and Bengio (2010) and He et al (2015)

W ∼ N

(
0,

√
2

n

)
� (1)

where N(µ,σ2) is a normal distribution with mean µ and variance σ2, and n is the size of the previous layer. This 
probability distribution was developed based on expected activation rates when using the ReLU activation (He 
et al 2015). Initializing weights in this manner avoids reducing or magnifying input signal magnitudes as signals 
propagate through the network and improves network convergence. The biases for each neuron were initialized 
to a value of 0.01. Training was terminated if the validation loss did not improve after 20 epochs.

We examined using different levels of dropout probability for the hidden layers as indicated in table 1 (Sriv-
astava et al 2014). The dropout probability used for inputs is usually smaller than that used for the hidden nodes. 
The input dropout probability values are in table 1. We studied using different amounts of L2 weight decay as 
indicated in table 1. Input Gaussian noise was also enabled or disabled to study whether input noise improved 
DNN beamformers. When enabled, white Gaussian noise was added to batches of training and validation data 
with variable SNR in the range 0–40 dB. These methods have the effect of regularizing a DNN, can prevent a net-
work from overfitting (i.e. memorizing the training data), and aid in network generalization.

During training, DNN inputs were normalized such that individual input vectors had maximum norm equal 
to one. During the inference phase, the input vector was normalized by its maximum norm and the DNN output 
was renormalized by the input maximum norm.

Pytorch was used to create and train all of the DNNs in this work (Paszke et al 2017). Training was performed 
on a GPU computing cluster maintained by the Advanced Computing Center for Research and Education at 
Vanderbilt University.

2.3.  Training data
All training data were generated using Field II, which is a program for simulating pressure fields for ultrasonic 
sources using linear acoustics (Jensen and Svendsen 1992, Jensen 1996). The physical modeling of the acoustic 
wave propagation studied in this work is reviewed briefly and the interested reader is referred to existing work for 
a more thorough treatment (Jensen 1991, Jensen and Svendsen 1992). Jensen derived a linear inhomogeneous 
wave equation with a scattering term that is a function of density and speed of sound variations and given by 
Jensen (1991)

Table 1.  Hyperparameter search space.

Parameter Search values

Training dataset # 1, 2, 3

Batch size 50, 100, 500, 1000

Number of hidden layers 1–5

Layer width 65, 130, 260, 520

Input Gaussian noise True or false

Input dropout probability 0, 0.1, 0.2

Hidden node dropout probability 0, 0.1, 0.2, 0.3, 0.4, 0.5

L2 weight decay 0, 10−5, 10−4

Phys. Med. Biol. 64 (2019) 045018 (15pp)
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∇2p − 1

c2
0

∂2p

∂t2
=

−2∆c

c3
0

∂2p

∂t2
+

1

ρ0
∇(∆ρ) · ∇p,� (2)

where p  is the acoustic pressure, which is small compared to ambient pressure, ∆c  represents small sound speed 
variations about a mean value c0, and ∆ρ represents small density variations around a mean value ρ0. In order 
to model the received signals of an ultrasound imaging system, equation (2) needs to be solved by including 
information about the ultrasonic source and receiver (assumed here to be the one and the same) and also the 
scattering sites.

The emitted field for the ultrasound transducer can be modeled as Jensen and Svendsen (1992)

pt(�r1,�r2, t) = v(t) ∗ Em(t) ∗ h(�r1,�r2, t)� (3)

where the convolutions are in the time domain, �r1 is the field location, �r2 is the transducer location, v(t) is the 
excitation signal, Em(t) is the electromechanical impulse response of the transducer, and h(�r1,�r2, t) is the spatial 
impulse response of the transducer. The spatial impulse response is the Green’s function for bounded space 
integrated over the transducer surface (Jensen 1991). The Green’s function for bounded space is used because 
the transducer is assumed to be on an infinite, rigid baffle.

Using acoustic reciprocity, the received pressure field at position �r2 due to a small spherical source at position 
�r1 can be modeled as Jensen (1991)

pr(�r1,�r2, t) = Em(t) ∗ h(�r2,�r1, t)� (4)

where the convolution is in the time domain and Em(t) is the electromechanical impulse response of the 
transducer. Finally, the pulse-echo response from a distribution of scatterers given by f (�r1) can be found by 
convolving the emitted field with the received field in the time domain and then convolving the result in the 
spatial domain with the scattering function.

Field II computes the spatial impulse response efficiently by splitting the transducer surface into rectangular 
elements that are small compared to the wavelength and summing the analytic far-field responses from these 
small rectangular elements (Jensen and Svendsen 1992). The DNN beamformers in this work can be thought of 
as learning how to recognize the pulse-echo spatial impulse response for the imaging system.

Three datasets were created and used for training DNN beamformers. The three datasets were treated as a 
hyperparameter as in table 1. Dataset #1, dataset #2, and dataset #3 are described in figures 2(a)–(c) respec-
tively. Note that dataset #1 had the same configuration as our previous work on training DNN beamformers 
(Luchies and Byram 2018a), while dataset #2, and dataset #3 are novel. In all methods, scatterers were ran-
domly placed in an annular sector as depicted in figure 2. The annular sector had a width of 50 pulse lengths. The 
responses from a particular scatterer were only kept if they appeared within the STFT gate that was centered at the 
transmit focus. The goal was to train a network for this STFT gate.

The scatterers were divided into two groups, including on-axis and off-axis scatterers. The division was set as 
the region between the nulls of the main lobe for a simulated beam at the transmit center frequency. For on-axis 
scatterers, the target signal was the same as the input signal. For off-axis scatterers, the target signal was a vector 
of zeros. When an input signal was the combination of on-axis and off-axis scatterers as in datasets #2 and #3, 
the target consisted of the summation of on-axis signals. If the input consisted of the responses from only off-axis 
scatterers, the target was a vector of zeros.

Figure 2.  (a) Dataset #1 consisted of the responses from single scatterers. (b) One half of dataset #2 consisted of responses from 
a single scatterer (similar to dataset #1) and the second half consisted of the combined responses from two scatterers at different 
locations. (c) One third of dataset #3 consisted of responses from a single scatterer (similar to dataset #1), the second third 
consisted of the combined responses from two scatterers at different locations (similar to dataset #2), and the final third consisted of 
the combined responses from scatterers at three different locations.

Phys. Med. Biol. 64 (2019) 045018 (15pp)
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The simulation parameters are in table 2. The simulated transducer was modeled after an ATL L7-4 (38 mm) 
linear array transducer. For each dataset described in figure 2, a training and a validation dataset were created. 
The training dataset was only used to adjust weights. The validation dataset was used to stop training and studied 
as a method for DNN beamformer selection. The training datasets had 100 000 examples and the validation data-

sets had 10 000 examples.

2.4.  Generalized coherence factor
Many adaptive beamforming methods have been developed for suppressing off-axis scattering in ultrasound 
images. Images created using the generalized coherence factor (GCF) were included in this paper to serve as 
a comparison between the DNN beamformer and other adaptive beamformers (Li and Li 2003). The GCF is 
defined as

GCF =

∑M0

k=−M0
|S(k)|2

∑ N
2 −1

k=− N
2
|S(k)|2

� (5)

where N is the number of elements in the subaperture, S(k) is the discrete Fourier transform across the aperture 
dimension, k is spatial frequency, and M0 is the frequency cutoff for the coherent sum in the numerator. We used 
M0  =  3 for all GCF images in this paper (Wang et al 2007).

2.5.  Image quality metrics
We quantified image quality using contrast ratio (CR)

CR = −20 log10

(
µlesion

µbackground

)
,� (6)

contrast-to-noise ratio (CNR) (Patterson and Foster 1983, Smith et al 1983, Smith and Wagner 1984)

CNR = 20 log10


 |µbackground − µlesion|√

σ2
background + σ2

lesion


 ,� (7)

and speckle signal-to-noise ratio (SNRs)

SNRs =
µbackground

σbackground
,� (8)

where µ is the mean and σ is the standard deviation of the uncompressed envelope. CR and CNR require 
specification of a lesion region and a background region, while SNRs requires only specification of a background 
region. When estimating electronic SNR between successive frames, we used (Friemel et al 1998)

SNR = 10 log10

(
ρ

1 − ρ

)
,� (9)

where ρ  is the correlation coefficient between two successive frames.

2.6.  Simulation: channel SNR analysis
We studied the robustness of DNN beamformers to noise using FIELD II simulations (Jensen and Svendsen 
1992, Jensen 1996). In each simulation, an anechoic cyst at a depth of 7 cm and having a diameter of 5 mm was 
imaged using a simulated L7-4 38 mm linear array. No scatterers were located inside the cyst and 25 scatterers per 
resolution cell were placed in the background region. The noiseless channel data was then corrupted using white 

Table 2.  Linear array scan parameter values.

Parameter Value

Active elements 65

Transmit frequency 5.208 MHz

Pitch 298 µm

Kerf 48 µm

Simulation sampling frequency 520.8 MHz

Experimental sampling frequency 20.832 MHz

Speed of sound 1540 m s−1

Transmit focus 70 mm

Phys. Med. Biol. 64 (2019) 045018 (15pp)
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Gaussian noise to vary channel SNR from 10 dB to  −10 dB in steps of 5 dB. A total of five simulated anechoic 
cysts were studied.

2.7.  Physical phantom and in vivo scans
A linear array transducer (ATL L7-4 38 mm) was operated using a Verasonics Vantage 128 system (Verasonics, 
Kirkland, WA) to conduct physical phantom scans. The physical phantom was a multipurpose phantom (Model 
040GSE, CIRS, Norfolk, VA) and a cylindrical anechoic cyst at a 7 cm depth with an approximately 3 mm diameter 
was scanned. Five scans were made at different positions along the cylindrical cyst.

To demonstrate that DNN beamformers trained using the approach that we have developed can be used with 
other ultrasound transducer geometries besides linear arrays, the physical phantom was also scanned using a 
curvilinear array transducer (ATL C5-2) using a Verasonics Vantage system. Cylindrical cysts at 1.5 cm, 4.5 cm, 
and 7 cm were scanned. A total of seven scans were conducted after moving the cysts to different locations in the 
field of view of the transducer. DNN beamformers for a C5-2 array were trained from scratch and training data 
was generated using Field II.

A linear array transducer (ATL L7-4 38 mm) was operated using a Verasonics Vantage 128 system (Verason-
ics, Kirkland, WA) to scan the liver of a 36 year old healthy male. Scanning was conducted to look at liver vascula-
ture. The study was approved by the local Institutional Review Board.

2.8.  The effect of training dataset size
When training DNNs, one of the most reliable approaches for performance improvement is to increase training 
dataset size (Hestness et al 2017). Studying model performance as a function of this quantity provides a way to 
predict potential performance improvements using this strategy.

After selecting a DNN beamformer based on simulated image CNR, we retrained this DNN beamformer 
using the same hyperparameter settings and model architecture multiple times to study the effect of training 
dataset size. The studied training dataset sizes include 102, 103, 104, and 105. For each training dataset size, the 
DNN beamformer was retrained five times using different starting weights. In each case, the size of the validation 
dataset was kept constant with a value of 104.

3.  Results

3.1.  Channel SNR analysis
3.1.1.  Hyperparameters and image quality
Figure 3 shows image quality for simulated anechoic cysts as a function of channel SNR for different 
hyperparameters. Each row demonstrates the effect of a different hyperparameter on image quality. For example, 
figures 3(a)–(c) shows image quality for three DNN beamformers. The first DNN beamformer was selected from 
the group of beamformers that were trained using dataset #1 and it was selected as the beamformer that had 
the best performance in terms of CNR. The results for this beamformer are shown as the blue (circle) line. The 
second DNN beamformer was selected from the group of beamformers that were trained using dataset #2 and it 
was selected as the beamformer that had the best performance in terms of CNR. The results for this beamformer 
are shown as the orange (triangle) line. The third DNN beamformer was selected from the group of beamformers 
that were trained using dataset #3 and it was selected as the beamformer that had the best performance in terms 
of CNR. The results for this beamformer are shown as the green (square) line. Displaying results in this manner 
provides a way to visualize the effect of different hyperparameters on image quality, while marginalizing out the 
remaining hyperparameters.

Figure 3(a) shows that CR was best when training with dataset #1 (single point target responses) or dataset 
#2 (single point target responses and the combined responses from two point targets). Figure 3(c) shows that 
speckle SNR was best when training with dataset #2 or dataset #3 (single point target responses, the combined 
responses from two point targets, and the combined responses from three point targets). Figure 3(b) shows that 
CNR was comparable for all datasets when the channel SNR was sufficiently high.

Figures 3(e) and (f) show that using a batch size of 500 consistently produced the best CNR and speckle SNR. 
It should be noted that when disabling network regularization methods such as dropout or weight decay, using 
smaller batch sizes produced the best results in terms of image quality.

Figures 3(g)–(i) show how image quality improved as the number of hidden layers increased, which is similar 
to most deep learning applications. However, it should be noted that the network with five hidden layers pro-
duced lower image quality than did the network with four hidden layers. Figures 3(k) and (l) show similar trends 
in that using networks with wider layers improved image quality.

Figure 3(m) show that there was little difference for CNR and speckle SNR when enabling or disabling input 
Gaussian noise. In contrast, figures 3(p)–(r) show that image quality improved when using input dropout.

Phys. Med. Biol. 64 (2019) 045018 (15pp)
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Figures 3(s)–(u) show that using some dropout for the hidden layers improved image quality. This finding is 
in contrast to our previous work which suggested that dropout was not advantageous for training networks for 
DNN beamforming (Luchies and Byram 2018a). However, in that work we showed DNN beamformer training 
results in terms of validation loss and not image quality. Figures 3(v)–(x) show that enabling weight decay did not 
provide any benefit for image quality compared to disabling weight decay.

Overall, figure 3 shows that the trained DNN beamformers were robust to noise. The improvement in CNR 
of DNN beamformers compared to DAS actually increased for higher levels of noise. Finally, DNN beamformers 
produced better CNR than DAS and GCF, irrespective of the examined noise levels.

Figure 3.  CR, CNR, and speckle SNR for DNN beamformers as a function of channel SNR. (a)–(c) Out of all DNN beamformers 
that used training dataset #1, we selected the best DNN beamformer in terms of CNR, and display CR, CNR, and SNRs for this 
beamformer as the blue (circle) line. Out of all DNN beamformers that used training dataset #2, we selected the best DNN 
beamformer in terms of CNR, and display CR, CNR, and SNRs for this beamformer as the orange (triangle) line. Out of all DNN 
beamformers that used training dataset #3, we selected the best DNN beamformer in terms of CNR, and display CR, CNR, and 
SNRs for this beamformer as the green (square) line. Performance of the best DNN beamformer as a function of (d)–(f) batch size, 
(g)–(i) number of hidden layers, (j)–(l) layer width, (m)–(o) input Gaussian noise, (p)–(r) input dropout, (s)–(u) hidden layer 
dropout, and (v)–(x) weight decay. For comparison, the dashed black line shows the performance of DAS and the dark gray dashed 
dotted line shows the performance for GCF. The cyan dashed dotted line shows the theoretical limit for CNR.

Phys. Med. Biol. 64 (2019) 045018 (15pp)
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3.1.2.  Validation loss and image quality
Typically, DNNs are selected based on the validation loss. However, figure 4 shows that network mean squared 
error validation loss was not a good predictor of image quality (Luchies and Byram 2018b). The R2 for 
figures 4(a)–(c) were  −0.05, −0.62, and  −0.12, respectively. The best DNN beamformer in terms of CNR was 
trained with dataset #2 and the validation loss was an order of magnitude higher than the DNN beamformer 
with the lowest validation loss. The DNN beamformer with lowest validation loss produced CNR that was 15%–
30% lower than the DNN beamformer with best CNR. Figure 4(a) also shows how the CNR variance amongst 
DNN beamformers that used dataset #1 was larger than the CNR variance for DNN beamformers that used 
datasets #2 and #3.

3.1.3.  Channel SNR improvements
Figure 4(d) shows that the trained DNN beamformers increased channel SNR by at least 10 dB and up to 
20 dB compared to the input channel SNR. These results provide evidence of the denoising ability of DNN 
beamformers.

3.1.4.  DNN beamformer selection and performance
Instead of selecting a DNN beamformer based on validation loss, we selected the best performing DNN 
beamformer by averaging the measured CNR values for the studied channel SNR values and picking the DNN 
beamformer with the best average CNR. The hyperparameter values for the DNNs in this beamformer were as 
follows: the DNNs were trained using dataset #2, 500 batch size, 4 hidden layers, no Gaussian noise was added 
to the inputs, 0.2 input dropout probability, 0.4 hidden layer dropout probability, and no weight decay was 
used. Simulated images of anechoic cysts using this DNN beamformer are in figure 5, which demonstrate the 
robustness of DNN beamforming to electronic noise along with the improvements to image quality offered by 
DNN beamforming.

3.2.  Physical phantom
3.2.1.  Validation loss and image quality
Figure 6 shows that mean squared error validation loss was also not a good predictor for image quality in the 
physical phantom scans. The R2 for figures 6(a)–(c) were  −0.17, −0.02, and 0.05, respectively.

Figure 4.  CNR as a function of mean squared error validation loss for DNN beamformers trained with (a) dataset #1, (b) dataset 
#2, and (c) dataset #3. The validation loss is the average validation loss for all DNNs in a DNN beamformer. The CNR values are 
average values across the channel SNR range studied in the anechoic cyst simulation. The black dashed line indicates CNR for DAS 
and the gray dashed dotted line indicates CNR for GCF. (d) Each blue line represents the channel SNR after processing by a specific a 
DNN beamformer. The dashed black line is the channel SNR for the best DNN beamformer selected based on CNR. The dashed-
dotted gray line is the input channel SNR.

Phys. Med. Biol. 64 (2019) 045018 (15pp)
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3.2.2.  DNN beamformer performance
Figure 7 provides a comparison of DAS and DNN beamformer images when using the DNN beamformer with 
the best CNR on simulated images. Contrast improvements are noticeable in the DNN beamformer image. 
After a depth of about 55 mm, the speckle pattern of the DNN beamformer image is identical to that of DAS. At 
shallower depths, the speckle variance of the DNN beamformer image increased. However, contrast for the small 
anechoic cysts at 50 mm depth also improved in the DNN beamformer image compared to the DAS image.

Figure 5.  ((a), (d)) DAS, ((b), (e)) GCF, and ((c), (f)) DNN images for (a–c) high and (d–f) low channel SNR. Images shown with 60 
dB dynamic range.

Figure 6.  (a) CR, (b) CNR, and (c) SNRs for an anechoic cyst inside a physical phantom as a function of mean squared error 
validation loss. The validation loss is the average validation loss for all DNNs in a DNN beamformer. The black dashed line indicates 
values for DAS and the gray dashed dotted line indicates values for GCF.

Figure 7.  (a) DAS and (b) GCF, and (c) DNN images for anechoic cyst in a physical phantom. Images shown with 60 dB dynamic 
range.

Phys. Med. Biol. 64 (2019) 045018 (15pp)
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It should also be noted that the DNN beamformer was trained assuming a beam centered in the active sub-
aperture. In the lateral regions of the scan in figure 7 (i.e. less than  −1 cm and greater than 1 cm), the beams were 
not centered in the active subaperture. For the DNN beamformer, speckle variance appeared to increase slightly 
in these regions compared to DAS; however, training DNN beamformers to account for non-centered beams 
should reduce this artifact.

3.2.3.  Image quality in simulation and phantom scans
Figure 8 shows scatter plots for image quality metrics measured in simulation compared to image quality metrics 
measured in a physical phantom. The R2 coefficient for CR, CNR, and speckle SNR was 0.95, 0.85 and 0.94, 
respectively. In general these results show that for the studied DNN beamformers, the image quality measured 
in simulation correlated with the image quality measured in the physical phantom. This finding suggests that 
selecting DNN beamformers based on simulated images is a better strategy than selecting based on validation 
loss.

3.2.4.  Phantom scans using a curvilinear array
The phantom scans using a curvilinear array are in figure 9. For DAS and DNN beamforming, the CR for 
the 4.5 cm deep cyst was 19.4 ± 2.3 dB and 22.4 ± 5.2 dB, respectively. For DAS and DNN beamforming, the 
CNR for the 4.5 cm deep cyst was 4.4 ± 0.6 dB and 5.1 ± 0.6 dB, respectively. These reported speckle statistics 
demonstrate quantitative improvements to image contrast using DNN beamforming that support the qualitative 
improvements that are visible in figure 9.

3.3.  In vivo
3.3.1.  Validation loss and image quality
Figure 10 shows that mean squared error validation loss was not a good predictor for image quality in in vivo 
scans, which is consistent with simulation and physical phantom scans. The R2 for figures 10(a)–(c) were  −0.07, 
0.03 and 0.18, respectively. Each point on the scatter plot represented the average across seven images and a single 
pair of background and inside regions were selected in each image.

3.3.2.  DNN beamformer performance
Figure 11 provide comparison images for DAS and DNN beamforming. The DNN beamformer used was 
selected as the DNN beamformer with best CNR in simulated images. These results show the increase in contrast 
when using DNN beamforming. Figure 11(a) also shows the speckle preserving ability of DNN beamformers. 

Figure 8.  Scatter plots for (a) CR, (b) CNR and (c) SNRs measured on simulated data and on physical phantom data. Each circle 
represents an individual DNN beamformer.

Figure 9.  (a) DAS and (b) DNN images for anechoic cysts in a physical phantom using a curvilinear array. Images shown with 60 dB 
dynamic range.

Phys. Med. Biol. 64 (2019) 045018 (15pp)
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Similar depths of field are also apparent for the DNN beamformer in physical phantom and in vivo images when 
comparing figures 7 and 11.

3.3.3.  Image quality in simulation and in vivo scans
Figure 12 shows scatter plots for image quality metrics measured in simulation compared to image quality 
metrics measured in in vivo scans. The R2 coefficient for CR, CNR and speckle SNR was 0.84, 0.84 and 0.78, 
respectively. In general these results show that for the studied DNN beamformers, the image quality measured 
in simulation correlated with the image quality measured in the in vivo scans. This finding provides further 
evidence that selecting DNN beamformers based on simulated images is a better strategy than selecting based on 
validation loss.

Figure 10.  (a) CR, (b) CNR, and (c) SNRs for in vivo scans as a function of DNN beamformer mean squared error validation loss. 
The validation loss is the average validation loss for all DNNs in a DNN beamformer. The black dashed lines indicate values for DAS 
and the gray dashed dotted lines indicate values for GCF.

Figure 11.  In vivo scans of human liver using ((a), (d)) DAS, ((b), (e)) GCF and ((c), (f)) DNNs. The solid white lines shows the 
inside region and the dashed red line shows the background region used to calculate image quality metrics. Images shown with 60 dB 
dynamic range.

Phys. Med. Biol. 64 (2019) 045018 (15pp)
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3.4.  Training dataset size
Figure 13 shows the effect of training dataset size on image quality for simulation, physical phantom, and in 
vivo scans. In particular, there were large improvements in CR and CNR between dataset sizes of 103 and 104 for 
simulation, physical phantom, and in vivo scans. In addition, the variance amongst DNN beamformers trained 
at the same dataset size decreased noticeably for training dataset sizes equal to or greater than 104 in physical 
phantom and in vivo scans. Finally, the findings in figure 13 show that DNN beamformers trained with the same 
settings but with different weight initialization produced consistent image quality as long as the training dataset 
size was large enough.

4.  Discussion

Figures 4, 6 and 10 demonstrate the wide range of image quality achieved by the different DNN beamformers 
for simulated, physical phantom, and in vivo. These results are significant because they show that almost all of 
the DNN beamformers trained in this work improved image contrast in simulation, experimental, and in vivo 
scans. Previously, we showed this result, but only for simulated scans (Luchies and Byram 2018b). It should be 
noted that some of the DNN beamformers also caused severe speckle degradation. The DNN beamformers that 
performed well in terms of image quality probably learned the best hidden representation for suppressing off-
axis scattering.

Although CNR in figure 3(b) was comparable for all of the studied training datasets, we would argue that it is 
preferable to train using dataset #2 or dataset #3 because these datasets produced speckle SNR values that were 
comparable to DAS. We expect that it will be more feasible in the future to improve the CR results when training 
with dataset #2 or #3 than it will be to improve the speckle SNR results with dataset #1.

Our goal for this work was to train DNNs that produced better quality images but still possessed the fun-
damental features of B-Mode ultrasound images. The primary metric for determining image quality is CNR, 
but our objective of preserving fundamental features of B-Mode places an upper limit of 5.6 dB on CNR (Dahl 
et al 2006). With this in mind, figures 4, 6 and 10 show that mean squared error validation loss was not a good 
predictor for ultrasound image quality. As an initial solution to the problem of DNN beamformer selection, we 
proposed using image quality from simulated images to evaluate and select DNN beamformers. Figures 8 and 
12 demonstrated that using simulated image quality to select a DNN beamformer was effective for selecting the 
DNN beamformer with best image quality for physical phantom and in vivo scans.

The results in figure 3 show that DNN beamformers trained with input white Gaussian noise did not improve 
image quality compared to the DNN beamformers that were trained without this type of input noise. We suspect 
these results can be explained because the DNN beamformers were trained to remove a perturbation (i.e. off-axis 
scattering) from a signal of interest (i.e. on-axis scattering) and this removal process encouraged the DNNs to be 
able to handle other sorts of perturbations such as white Gaussian noise. However, it is curious that using input 
dropout did offer image quality improvements. These results suggest that DNN beamformers may already be 
robust to missing or blocked elements (Li et al 1993, Jakovljevic et al 2017).

The results in figure 10 are significant because they demonstrate CNR improvements using DNN beamform-
ers across three times as many in vivo scans than our previous work (Luchies and Byram 2018a). In addition, 
almost all DNN beamformers studied in this work produced better CNR than DAS and GCF. Figure 11 also 
shows how DNN beamformers improved image quality over a much larger field of view compared to that sug-
gested by our previous work (Luchies and Byram 2018a).

It should be noted that DNN beamforming adds additional computational cost above and beyond that which 
is required by DAS. For the images in this work, processing by a DNN beamformer usually took 30 s or less. We 
are currently working on implementing a GPU based beamformer capable of DNN beamforming. We expect to 
be able to achieve real-time or close to real-time imaging with DNN beamformers. Previously, Hyun et al imple-

Figure 12.  Scatter plots for (a) CR, (b), CNR, and (c) SNRs measured on simulated data and in vivo. Each circle represents an 
individual DNN beamformer.
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mented short-lag spatial coherence (SLSC) on GPUs and were able to achieve frame rates of about 20 frames per 
second (Hyun et al 2015).

A major challenge that faces the development of DNN beamforming is to verify that anatomical details 
uncovered by a DNN beamformer correspond to the actual anatomy of the patient and were not mistakes made 
by the beamformer. Future work is required to develop methods to perform this verification and we describe 
several methods here.

One strategy to verify the fidelity of DNN beamforming is to compare the results to existing advanced beam-
formers (e.g. GCF, ADMIRE, etc). For example, there is a blood vessel that is visible on the right side of the image 
at a depth of 60 mm in figures 11(a)–(c). For the DAS image in figure 11(a), image contrast and also confidence 
that this region was actually a blood vessel were poor. For the GCF image in figure 11(b), image contrast for this 
region was high as well as confidence that this region was a blood vessel. For the DNN beamformer image in fig-
ure 11(c), image contrast was also high. The agreement between the DNN beamformer image and GCF image 
for this region of the image serve as verification that the DNN beamformer produced a correct image in this case.

A strategy that correlates anatomical details revealed by a DNN beamformer with those revealed by a differ-
ent advanced beamformer could be used to systematically build confidence in a DNN beamformer. However, 
it should be noted that this type of strategy is not useful for assessing anatomical features revealed by a DNN 
beamformer that were not revealed by other advanced beamformers. We hypothesize that DNN beamformers 
will reveal details that other beamformers will not reveal.

Developing methods to verify image details in these cases will be the subject of future investigation. For exam-
ple, advanced ultrasound simulation tools could be used to simulate anatomical details that are masked by rever-
beration clutter and wavefront aberration (Pinton et al 2009). Because the ground truth would be known, it 
becomes possible to verify that uncovered features are actually present. Similarly, experimental studies could 
be conducted by imaging phantoms through animal abdominal wall tissue to mask features of interest through 
wavefront aberration and reverberation. Using a well characterized phantom would allow for verification that all 
revealed features are present.

If on-axis scatterering is considered the signal of interest and off-axis scatterering a perturbation that needs 
to be removed, the DNNs in this work can be viewed as being similar to denoising autoencoders (Vincent et al 
2008). Autoencoders have several uses including dimensionality reduction, representation learning, and deep 
neural network pre-traning (Goodfellow et al 2016). Interpreting DNN beamformers as denoising autoencoders 
also allows us to hypothesize that the DNN beamformers operate by learning an encoding stage, perturbation 
suppression stage, and decoding stage. Compared to the input domain, the hidden representation provides a 
better space to suppress the unwanted perturbation (i.e. off-axis scattering and noise) while preserving the signal 

Figure 13.  Image quality as a function of training sample size for ((a)–(c)) simulation SNR study, ((d)–(f)) physical phantom, and 
((g)–(i)) in vivo scans. The dashed lines indicate performance achieved by DAS.
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of interest (i.e. on-axis scattering). It should be noted that methods like ADMIRE can also be interpreted as an 
encoder, perturbation suppression, and decoder.

Hestness et al note that the deep learning community has relied on three recipes for advancing deep learn-
ing performance, including searching for improved model architectures, creating larger training datasets, and 
scaling computation (Hestness et al 2017). They note that model architecture advances tend to be serendipitous, 
whereas the other recipes more reliably improve performance. In addition, they also postulate a power law learn-
ing curve as a function of training dataset size and note that in many applications, model architectures merely 
shift the intercept of this power law and do not change the exponent. In other words, the rate of performance 
improvement as a function of model size and training dataset size appears to be the same for differing model 
architectures.

Hestness et al argue that DNN learning curves can be divided into three regions (Hestness et al 2017). First, 
there is a flat region called the small data region where DNN performance is poor and constant as a function 
of training dataset size. Second, is the power law region where performance increases linearly as a function of 
training dataset size. Finally, there is the irreducible error region, where the performance curve is flat again with 
increasing training dataset size.

Focusing on figure 13(d), a small data region is apparent for training dataset sizes between 102 and 103 and 
CR is comparable to DAS. Next, between 103 and 105, a power law region is apparent as CR improves dramatically 
compared to DAS. The findings suggest that further improvements in CR might be achieved using larger training 
datasets. Improving CR is necessary to expand the contrast ratio dynamic range of DNN beamformers (Dei et al 
2017). Doing so could enable DNN beamformers to avoid or reduce the dark artifact region that affects many 
adaptive beamforming methods (Rindal et al 2017).

It should be noted that speckle SNR actually decreased for in vivo scans in figure 13(i), suggesting that DNN 
beamformers trained with smaller datasets performed better than those trained with larger datasets. However, 
we postulate that DNN beamformers trained with larger datasets revealed small blood vessels that were not 
revealed by DNN beamformers trained using smaller datasets or by DAS. The revelation of these small blood ves-
sels increased speckle variance and decreased speckle SNR. Assuming this hypothesis is true, speckle SNR values 
measured from in vivo liver scans were not a good metric for selecting training dataset size. This phenomena of 
decreasing speckle SNR as a function of increasing dataset size was not observed in the physical phantom scans, 
which had uniform scattering background regions.

5.  Conclusion

In this work, we report on the noise robustness of DNN ultrasound beamforming. We used simulations to 
demonstrate that DNN beamformers improved image quality in low and high noise situations and that DNN 
beamformers increased channel SNR by 10–20 dB. In addition, we studied the effect of different hyperparameters 
on ultrasound image quality. We also demonstrated that the mean squared error validation loss of DNN 
beamformers was not a good predictor for image quality for simulation, phantom, and in vivo scans, which 
motivates trying to identify a new loss function in the future. Based on these findings, we studied image quality 
for all of the trained DNN beamformers in physical phantom and in vivo scans and showed that the image quality 
in physical phantom scans and in vivo scans correlated with simulation image quality. These results suggest 
that selecting a DNN beamformer based on simulated image quality is a better strategy than selecting based on 
mean squared error validation loss. Overall, the results in this report demonstrate the potential of using DNN 
beamformers to improve B-mode ultrasound image quality.
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