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Abstract—The generalized contrast-to-noise ratio
(gCNR) is a new but increasingly popular metric for
measuring lesion detectability due to its use of probability
distribution functions that increase robustness against
transformations and dynamic range alterations. The
value of these kinds of metrics has become increasingly
important as it becomes clear that traditional metrics
can be arbitrarily boosted with advanced beamforming
or the right kinds of postprocessing. The gCNR works
well for most cases; however, we will demonstrate
that for some specific cases the implementation of
gCNR using histograms requires careful consideration,
as histograms can be poor estimates of probability
density functions (PDFs) when designed improperly.
This is demonstrated with simulated lesions by altering
the amount of data and the number of bins used in the
calculation, as well as by introducing some extreme
transformations that are represented poorly by uniformly
spaced histograms. In this work, the viability of a
parametric gCNR implementation is tested, more robust
methods for implementing histograms are considered,
and a new method for estimating gCNR using empirical
cumulative distribution functions (eCDFs) is shown. The
most consistent methods found were to use histograms
on rank-ordered data or histograms with variable bin widths, or to use eCDFs to estimate the gCNR.

Index Terms— Histograms, image analysis, image quality, nonparametric statistics, probability density function (PDF),
ranking, ultrasonic imaging.

I. INTRODUCTION

BEAMFORMING methods in ultrasound imaging are
most frequently judged either qualitatively by experts or

quantitatively with image quality metrics. Historically, image
quality metrics have been proposed as quantitative measure-
ments that are predictive of clinical performance. Patterson [1]
proposed the contrast-to-speckle ratio (CSR) as a metric that
correlated well with subjective assessments of image quality.
CSR is calculated as the ratio of lesion contrast to speckle
noise or variance, which today we know as contrast-to-noise
ratio (CNR). Smith et al. [2] proposed a similar metric, CNRψ ,
which can be related to the optimal signal-to-noise ratio (SNR)
by incorporating the size of the lesion and an ultrasound
system’s spatial resolution. Using a contrast/detail phantom
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and choosing a threshold value for detection of each lesion,
this SNR calculation was able to predict lesion detection.
This suggests that CNR, which can be related to SNR, is a
valuable image quality metric for beamformer comparison as
an increase in CNR predicts an increase in lesion detectability.

Over time, the use of metrics such as contrast ratio and CNR
has become the de facto evaluation standard, as it is faster
and more convenient than having a sonographer or radiologist
evaluate dozens of images whenever a beamformer is modi-
fied. As a result, adaptive beamformers are often designed with
these metrics in mind. However, as these beamformers have
become more common, so have the concerns over whether
these beamformers are producing “real” improvements. In fact,
it has specifically been shown that it is relatively easy to make
a beamformer that artificially inflates CNR [3], [4]. In addition,
calculating CNR on log-compressed versus linear data results
in different values, making it less ideal as a go-to metric of
image quality. Therefore, methods for comparing beamformers
that can compensate for these factors are clear.

In investigating these issues, several new methods and
metrics have been proposed by different groups. Rindal et al.
[5], [6] proposed the dynamic range test (DRT), which seeks to
measure the impact of dynamic range alterations on resolution,
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Highlights
• gCNR is a robust image quality metric, but this article shows that the use of histograms can result in poor estimates

in some cases. Novel estimation methods are proposed, and robustness is evaluated.

• Novel methods such as using rank-ordered data or eCDFs are demonstrated to be more robust against unexpected
distributions and require less manual effort to produce good gCNR estimates.

• This article hopes to be educational for researchers wishing to effectively implement or further investigate gCNR by
highlighting potential risks and providing more robust estimation methods.

contrast ratio, and CNR. Contrast ratio dynamic range (CRDR)
was developed by Dei et al. [7], [8], [9] suggesting that
measuring relative contrast accurately is important, rather than
arbitrarily increasing contrast ratio everywhere. Histogram
matching calculates the transformation between two meth-
ods using histograms, which allows a user to better discern
true differences between methods [10]. And finally, and the
topic of this work, generalized CNR (gCNR) is a lesion
detectability metric designed to be robust against dynamic
range alterations [3], [4]. All these methods were explicitly
designed to allow for better comparisons between methods
that may be affected by dynamic range alterations. However,
as with all the image quality metrics, these new methods only
measure particular facets of image quality; none can provide a
complete clinical performance evaluation alone. For example,
CNR and gCNR are a measure of lesion detectability, but
they do not account for lesion size or spatial resolution. For a
complete clinical analysis, all these factors would need to be
considered.

The gCNR metric proposed by Rodriguez-Molares et al. [3],
[4] estimates the probability of lesion detection by measuring
the overlap between estimated probability density functions
(PDFs) of a target and reference region of an image. In theory,
the use of these PDFs makes gCNR resistant to dynamic
range alterations. The standard implementation given is to
compare the histograms of the target and reference regions and
measure the overlap by the counts of the bins. Histograms are
used since estimating the true distribution can be challenging
for some beamformers. However, this does make the metric
potentially reliant on how well the histograms represent the
data. Hyun et al. [11] demonstrate this in their work, showing
that gCNR when estimated with uniformly spaced histograms
is reliant on the choice of the number of bins, and they suggest
that even the spacing of the bins should be considered. This
means that histogram design requires careful consideration on
the part of the researcher to ensure gCNR is producing a good
estimate.

Designing good histograms is practically a field unto itself,
and methodology for optimizing and improving them has been
around for nearly a century. If gCNR is implemented using
histograms, these methods will need to be considered, and
Hyun et al. [11] do suggest that using classic methods for
choosing the number of bins or even using variable-width
bins will help. However, these methods have not yet been
evaluated in the context of gCNR, and an investigation into
which methods will produce the most robust estimates of
gCNR is required.

New in this work, we investigate beamformers and
post-beamforming processors that can make histogram design
difficult. We show that without careful effort, the gCNR
metric can be “tricked” and even the relative ranking of some
beamformers can be altered based on the choice of histogram
binning. We implement and evaluate classic histogram design
methods, including those suggested by Hyun et al. [11], as well
as a novel way to estimate gCNR using rank-ordered data.
Furthermore, we investigate a parametric implementation of
fitting the data to known distributions. Finally, we propose
a novel estimation method using empirical cumulative distri-
bution functions (eCDFs) that does not rely on histograms
at all. We compare these different methods across multiple
simulations of varying amplitudes and sizes, and with different
adaptive beamformers and post-beamforming processors.

II. METHODS

MATLAB (MathWorks, Natick, MA, USA) was used for
implementations of all the simulation methods, beamforming
algorithms, and image quality metrics.

We used Field II [12], [13] to generate the prebeamformed
channel data for all the simulations in this work. We simulated
lesions of varying amplitudes (anechoic, −20, −10, and 0 dB),
with six realizations for each. Lesions were simulated with
different radii (1, 2, 2.5, 3, 4, and 5 mm) and were acquired
with a 117-element, 0.257-mm pitch linear array transmitting
at 3 MHz with a bandwidth of 60%, focused at the depth
of the lesion (30 mm). Scatterers were randomly placed to
achieve an average of 15 scatterers per resolution cell, which
was 0.133 mm2. In all, 128 beams were acquired spaced
0.234-mm apart, which satisfies the Nyquist theorem at the
focus (expected lateral resolution is 0.517 mm). In addition,
multiple-line acquisition (MLA), also referred to as parallel
receive [14], was implemented to adjust the amount of data
for analysis with gCNR. Except when noted, MLA was used
to double (×2) the number of beams for all the cases prior
to beamforming. At MLA ×2, this resulted in a pixel size of
0.00226 mm2 with approximately 59 pixels per resolution cell.

We additionally used MATLAB to generate pairs of
Rayleigh distributions to measure the gCNR between them.
For these distributions, σ1 = 0.5 was constant in all the
cases, and σ2 was varied to achieve specific theoretical values
of gCNR. Specifically, we chose σ2 = 0.89, 1.27, and
2.16 to achieve approximate gCNR values of 0.4, 0.6, and 0.8,
respectively, making it easy to compare the gCNR estimates
to the “true” values. These sets were generated to measure the
number of independent data points that might be required to
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accurately estimate gCNR from a known distribution. For all
the pairs, 12 realizations were generated.

A. Beamforming and Post-Beamforming Algorithms
As this work is focused on the analysis of gCNR, the

discussion for the following beamformers is reserved for the
original works, and we include here only specific implemen-
tation details.

1) Delay-and-Sum: Implemented with no special apodiza-
tion (i.e., rectangular apodization).

2) Minimum Variance [15], [16]: Subarray lengths of
L = 0.5M and diagonal loading of ϵ = 1 · tr(R̂), where
1 = 1/(10L), were applied. M is the total number of
channels, and R̂ is the estimate of the covariance matrix.

3) Generalized Coherence Factor [17]: The cutoff frequency
index was set to M0 = 5.

4) Short-Lag Spatial Coherence [18]: The number of lags
used was 20, corresponding to approximately 17% of the
active aperture.

5) Aperture Domain Model Image Reconstruction [19], [20],
[21]: Parameters used were the same as in our previous
work [9].

6) Envelope Power Transforms: The envelope power trans-
form (EPT) is a post-beamforming gray-level transform (GLT)
as described by Thijssen et al. [22] and used by Rindal et al.
[6] in related work. We have chosen parameters specifically
for beating implementations of gCNR that do not account for
skewed data. We define it as a transform on the enveloped
data, specifically from delay-and-sum (DAS), |SDAS|

EPTn(|SDAS|) = |SDAS|
n (1)

where n is the desired power. For demonstration, we use EPT.5,
EPT2, and EPT4 in this work, which correspond to taking
the square root, the second power, and the fourth power of
the enveloped data, respectively. This result is log-compressed
using 20 ∗ log10 when displayed.

B. Contrast-to-Noise Ratio
CNR [1] is a measure of the difference in the average ampli-

tudes of a target and background region (contrast), normalized
by the speckle variance (noise). We define CNR as

CNR =
|µROI − µbackground|√
σ 2

ROI + σ 2
background

(2)

where µ is the mean value, and σ is the standard deviation
of the signal. Usually, the signal here is the enveloped, but
uncompressed data; however, it is possible to calculate CNR
from the log-compressed data as well. In this work, we will
distinguish between the two. CNR will be the uncompressed
version, and CNRlog will be the log-compressed version.

C. Generalized CNR
An in-depth explanation of gCNR can be found from the

original authors [3], [4], but we include here the important
aspects of the method to understand how manipulation can
occur.

Fig. 1. (Top) Example of two probability density functions, pi (x) and
po(x), representing the lesion and reference area, respectively. (Bottom)
Histograms of an anechoic lesion simulation to mimic the functions in
the above plot, implemented with the 100 bins. The gCNR estimate is
then based on the overlap in each bin.

gCNR is presented as a more robust version of CNR.
The metric is calculated from the overlap of estimated PDFs
of the target area (e.g., a lesion) and some reference area
(e.g., adjacent tissue). Fig. 1 shows an example of two such
functions, and solving for the overlap only requires calculating
the intersection between the two curves and integrating over
the respective areas of each. The actual gCNR metric is then
calculated as

gCNR = 1 − OVL (3)

where OVL is the area of overlap of the two curves. In prac-
tice, finding the actual PDF of either the lesion or background
tissue can be difficult, so the original implementation estimates
the PDFs using histograms, of which an example is shown in
Fig. 1. For example, the original work uses k = 100 uniformly
spaced bins, but as mentioned in the Introduction, Hyun et al.
[11] later showed that careful consideration needs to be taken
when choosing the number bins and potentially the spacing
of the bins, suggesting popular choices such as k = n1/2 or
k = n1/3. When using histograms, OVL can be calculated
by normalizing the histograms of the target and the reference
(such that the sum of each is 1), and then finding the smaller
quantity between the target and the reference for each bin
and summing all those together. This does rely on both the
histograms having the same distribution of bins.

D. Potential Manipulations of gCNR
Histograms have been around since the seventeenth cen-

tury [23], and it is thought that a properly built histogram is an
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Fig. 2. (a) Plots of gCNR for a set of simulated lesions (−20, −10,
0 dB) beamformed with DAS, where the number of bins used in the
histograms was varied, and additionally multiline acquisition was applied
to increase or decrease the effective number of data points in the
histograms. For MLA ×2, this resulted in n = 17 394 total points between
the target and reference regions of the image. This would result in
k = n1/2

= 132 or k = n1/3
= 26 bins as often recommended (shown

as the dotted lines). Note that the 0-dB case does not have a gCNR
of 0, which may be the result of estimator variability or bias. (b) Plots
of −20 and −10 dB simulated lesions of varying radii (1–5 mm), with
gCNR estimated with 100, 1000, and 10 000 bins. Standard deviation
between realizations is shown by the error bars. The lesions (bottom)
show the areas used for the lesions (white) and background (black).
The background was held constant to minimize its potential impact on
the gCNR estimate. (c) Plots of gCNR where the target and reference
groups are generated from Rayleigh distributions, where the number
of independent samples generated in the distributions can be finely
controlled. For all the three cases, σ1 = 0.5, while σ2 is varied as shown
in the plot. The same binning options are included as in (b), and the
dashed black line indicates the true gCNR calculated from the known
PDFs of these Rayleigh distributions. Note that at the extremes, 1 bin
results in 100% overlap and gCNR = 0, while an infinite number of bins
results in 0% overlap and gCNR = 1.

estimator of the underlying PDF [24]. However, choosing the
ideal binning of data for a histogram is an issue that has been
debated for years, with Sturges [25] writing about the optimal
number of bins back in 1926. Using too few bins generally
results in oversmoothing of the data, while too many will
likewise lead to undersmoothing [23]. Because of this, using
a suboptimal number of bins can lead to misrepresentation of
the data, obfuscating the PDF we are trying to estimate, and
therefore interfering with our ability to accurately estimate the
gCNR.

As a practical example of this, consider Fig. 2. Previously,
Hyun et al. [11] observed that gCNR is dependent on the

number of bins used, with the severity depending on the
amplitude of the target lesion. We can extend this under-
standing to also consider the number of data points being
considered. In Fig. 2(a), we show different amplitude lesions
that have MLA applied at different scales to increase or
decrease the number of data points, with gCNR estimated
using uniformly spaced histograms at varying numbers of
bins. We see that as we increase the number of data points
with MLA for a fixed number of bins, the gCNR estimate
converges on a consistent value. Alternatively, as the number
of bins decreases, the sampling or the number of data points
has less impact, suggesting a large ratio of data points to bins
is required for a good estimate. Furthermore, as also observed
by Hyun et al. [11], lower amplitude lesions are more impacted
by these decisions. Obviously there is a limit to how few
bins can be used (with the limit of 1 bin resulting in all the
estimates being 0), but the general trend is clear. Do note,
however, that MLA will only help make the histograms less
reliant on the number of bins used, but it will not produce
more independent data points, so it alone cannot help us to
more accurately predict the true distribution of a dataset.

However, we can analyze the effect of the amount of data
by simulating differently sized lesions or generating different
amounts of data from known distributions. Fig. 2(b) shows
a curve for lesions with radii ranging from 1 to 5 mm,
while Fig. 2(c) shows when we generate a specific number of
samples from known Rayleigh distributions and measure the
gCNR between those sets. In these cases as well, it seems like
smaller numbers of bins perform better, and larger numbers of
bins cause the gCNR estimate to approach 1 (no overlap, due
to every data point being in its own bin). We have also included
an approximate ratio of the number of pixels for the different
lesions compared with the number of pixels in a resolution
cell (approximately the number of correlated pixels), to show
how the two datasets might relate to each other. This suggests
that even for the largest lesion here, it still falls far to the left
side of the Rayleigh graph. At this stage, it is difficult to know
what this means as far as an ideal minimum amount of data
necessary to accurately assess gCNR.

An interesting observation from these graphs is the impact
of beamforming effects on the gCNR estimates. The Rayleigh
distributions, especially with the 100 bins case, suggest that
the number of data points may not necessarily impact the
estimate, assuming enough data that the distribution is actually
represented (in fact, this will be confirmed later). However,
in Fig. 2(b) with the simulated lesions we see a trend that
smaller lesions have a lower gCNR, and as the size increases
the estimate appears to converge. This is due to the impact of
sidelobe content and the width of the main lobe introducing
higher amplitude content into the target region. The shape of
the main lobe produces a gradual slope of amplitude laterally
between the background and the lesion. Depending on the
mask we use to choose the target region, some of this content
will naturally be included and will overlap partially with the
distribution of the background region. The total amount of
this sidelobe content will naturally vary directly with the
size (radius) of the lesion, and the area of the lesion will
vary directly with the square of the radius. This means that
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Fig. 3. Average gCNR (standard deviation shown as error bars) of
−20 dB simulated lesions from the indicated beamforming methods.
gCNR was calculated using different numbers of histogram bins, and
the ratio of pixels to bins and the total number of bins are shown. The
asterisk for each grouping indicates the highest gCNR value.

the ratio of the sidelobe content to total area will be higher
with smaller cysts. This results in a larger overlap with the
background region and a lower gCNR. This is also why as
the lesions get larger the gCNR appears to converge, as the
limit of this ratio goes to zero.

Further complicating matters, we show in Fig. 3 that varying
the number of bins (or ratio of pixels/bins) used in the
histograms can result in altering the rank-order of the eval-
uated beamformers. In this example, aperture domain model
image reconstruction (ADMIRE) has the highest gCNR when
estimating with 10 bins, while DAS is the best for 100 or
1000 bins. Short-lag spatial coherence (SLSC) ends up being
the best if an extreme number of bins (10 000) is used. This
makes it difficult for us to evaluate the relative performance of
these beamformers. Note that the standard deviation shown on
the error bars is from the different realizations simulated; for
any single realization, we would not have error bars to judge
how significant the differences are.

A second manipulation can arise even if the number of
pixels and bins is fixed. Consider the EPT described before,
where the enveloped data are taken to some chosen power.
When the power is manipulated, the relative positioning of
the data along the dynamic range can be altered. Fig. 4 shows
DAS, EPT.5, and EPT2 with the associated histograms for
a −20 dB lesion. Since all the three methods are simply
transforms of each other, the gCNR should be equal in all
the three cases; however, by manipulating the distribution of
the data points along the data’s range, the amount of overlap
when using uniformly sized bins can change. This occurs due
to the histograms being altered (even if the true overlap stays
the same), and the binning scheme being unable to accurately
represent the distributions. In the case shown here, as the
skew of the data is intensified, the ability of the histogram to
estimate and represent the PDF is diminished. The traditional
calculation of CNR is included both on the linear and log-
compressed data. Since the two transformations are based
on powers, the powers cancel out such that the CNRlog is
the same across all the three cases, while gCNR and CNR
increase and decrease together. We can expand on this further
in Fig. 5, where we see that normal binning rules produce
poor uniformly spaced histograms and therefore poor gCNR

Fig. 4. Simulated −20 dB r = 2.5 mm lesions beamformed with
(a) DAS, (c) EPT.5, and (e) EPT2. Corresponding histograms used to
calculate gCNR are shown in (b), (d), and (f) using Sturges’ formula to
determine the number of bins of the histogram. In these cases where the
skew of the data is high, the overlap estimate can be wrong. Traditional
CNR is included for each case, both calculated on linear and log-
compressed data.

Fig. 5. Simulated −20 dB r = 2.5 mm lesions beamformed with DAS
and transformed with the EPT with powers ranging from 1.5 to 3.5. In
this case, accurate assessment of the gCNR is only consistent around
k ≥ 500, though even this is only true for powers up to 3.5 as used here.
Compared with the classic binning rules, this is far more bins than might
be expected purely based on the amount of data. For reference, these
cases have a total number of data points n = 17 394, which results in
k = n1/2

= 132 or k = n1/3
= 26 bins as recommended (shown as the

dotted lines), which results in different gCNR estimates for each case.

estimates for the different powers used in the EPT. Since the
EPT is a GLT, the gCNR theoretically should be the same in all
the cases, but the estimate does not converge until significantly
larger numbers of bins are used, much higher than any binning
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rule would propose. These cases show that it may not always
be sufficient to simply choose an appropriate number of bins
based on the amount of data.

All these observations make it clear that using uniformly
spaced histograms is liable to cause issues unless careful and
manual attention is paid to every case. Even then, the optimal
histogram parameters may be different in separate cases, which
would make it difficult to report as an author and difficult to
evaluate as a reader. Instead, we will now consider different
ways we can formulate histograms, such as with variable bin
widths, as well as other techniques that may allow us to
sidestep the issue of histograms altogether.

E. Increasing Robustness of the gCNR

To resolve the issues presented, careful consideration needs
to be taken to make sure the histograms are accurately rep-
resenting the data, ensuring a more robust estimation of the
gCNR. We consider several possible options, detailed below.

1) Parameterized gCNR: Since estimation of gCNR relies
on the calculation of the overlap between the PDFs of the
lesion and reference material, a consideration can be made
that estimating the distribution of the data by finding the actual
PDF would be mathematically sound. Modeling different kinds
of tissue in ultrasound for detection and identification purposes
has been done [26], and the specific model used was often
related to the properties of the backscattered echo, divided
between pre-Rayleigh, Rayleigh, and post-Rayleigh (Rician)
[27], [28]. Efforts to improve the modeling of ultrasound data
led to the investigation of the K distribution [29], [30] and later
the homodyned K distribution [31]. However, K and homo-
dyned K distributions are significantly more computationally
complex compared with previous distributions, making them
relatively unappealing options. Instead, the Nakagami distri-
bution [32] was suggested for use with ultrasound [26], [33],
[34] as a much simpler alternative, while still incorporating
features of both the Rayleigh and Rician models [26].

For this work, we consider the Rayleigh, Rician, and Nak-
agami distributions as robust, and computationally efficient
options for modeling ultrasound echoes. All these distributions
are relatively straightforward and require only estimation of
one or two parameters. In addition, MATLAB has functions
for fitting data using each of these choices, making implemen-
tation quick and efficient. Then, calculating the overlap can be
done analytically or using built-in functions for the PDF and
cumulative distribution function (CDF). For each distribution,
we merely need to calculate the intersection using the PDF
and then integrate under the relevant sections using the CDF.

2) Histogram-Based gCNR: We can also consider methods
to make histogram-based gCNR estimations more robust to
data range manipulations. As previously stated, the choice of
the number of bins has been considered for nearly a century,
and as a result there are a multitude of methods available today.
Though there are too many to all be considered in this work,
we will include common choices for consideration.

Sturges’ formula was perhaps the first method published,
and it suggests using k = ⌈log2n⌉ + 1 [25], for n data points.
Since then, the Rice rule k = ⌈2 3

√
n⌉ has been suggested as

an alternative [35], and the square root rule k = ⌈
√

n⌉ is
commonly used in statistics software packages [36]. Sturges’
formula recommends very small numbers of bins, which would
be optimal for the examples in Fig. 2, while the Rice rule
produces somewhat less small estimates, while still being
small enough to work well for those examples. The square
root produces the largest estimates of these three, though it
technically produces a better estimate for the EPT examples in
Fig. 5. These rules were generally designed for certain kinds
of distributions of data and to be used with bins of a fixed
width, which means it is likely manipulation could still occur.

Instead, we consider variable bin widths as a method known
to be more reliable with skewed data. In general statistics,
variable bin widths are often avoided due to the narrow bin
widths that occur at high-density locations of the data [37], and
it is often specifically recommended not to use them without
caution [23]. However, for the purposes of estimating the
overlap for gCNR, it can adapt well to unexpected distributions
and skews. If variable widths are applied, then data range
manipulations should not occur, as the widths of the bins
will adjust as the density of the data is altered. For the
implementation presented here, we calculate the number of
bins desired as either k = ⌈

√
n⌉ or k = ⌈2n2/5

⌉ (suggested to
be optimal for variable-width histograms) [38] as noted. Bin
widths are designed such that each bin has an equal number
of data points.

Another possible implementation we consider is to
rank-order the data and estimate the gCNR from the list
of rankings. This would entirely eliminate the possibility of
manipulation via data range alteration, since the rank-order
of the data would never change, and therefore the estimates
of gCNR would be identical. Performing statistical analysis
on rank-order data is hardly a new concept and can be used
along side traditional metrics to gain more information about
the behavior of the data [39]. In addition, rank-order data
are used in many statistical tests such as those presented
by Friedman [40] and Wilcoxon [41], [42]. We implement
rank-ordering by sorting the entire set of data (both target
and reference) and separating the ranks into the original
target and reference groups. For example, consider two groups
[10, 40, 50] and [20, 30, 60]. If we rank all the data together
and then separate the ranks back into their original groupings,
we would get [1, 4, 5] and [2, 3, 6]. By estimating the gCNR
on these rankings rather than the original data, manipulations
to the original data (such as squaring) are ignored, since the
rankings will be unchanged, and thus the gCNR estimate will
be unchanged. For our implementation, we use the square root
rule to choose the number of bins, though the choice should
be more flexible since there will be a consistent number of
data points per bin, regardless of choice.

3) gCNR Using eCDFs: However, we can avoid both a para-
metric and histogram-based approach via the use of eCDFs.
We include as supplementary material a proof showing that
the gCNR can be estimated from the difference between the
CDFs of the target and reference regions, without the use
of any additional information. Specifically, and as visually
explained in Fig. 6, gCNR can be estimated based on the
amplitudes of the local maximums and minimums of the
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Fig. 6. Visual example of computing gCNReCDF from eCDFs. (a) His-
togram representation of the target and reference PDFs. (b) eCDF of
the two regions. (c) Theoretical PDF of the two regions (not accu-
rate, only for demonstration). (d) Difference function eCDFT − eCDFR.
Local maximums and minimums occur at intersections of the PDFs,
so the integration of the regions of the PDFs is related to the overlap,
and therefore the gCNR can be calculated from the equation in (i).
(e) and (f) shows an example of the process for two normal (Gaussian)
distribution PDFs and the related eCDFs. We can see in this example
that there are multiple intersections, which results in both local maxi-
mums and minimums. In most normal situations, there is only a single
maximum and minimum, but (g) and (h) shows an example of a unique
distribution which results in multiple local maximums and minimums, and
calculating the difference only on the global extremes gives the incorrect
gCNR.

difference function, H = eCDFT −eCDFR , and the difference
between the eCDF of the target and reference regions. We
prove in the supplementary material that with ideal functions
(continuous, differentiable)

gCNReCDF =

∑
HMAX −

∑
HMIN (4)

where HMAX and HMIN are the set of local maximums and
minimums of H , respectively.

Our implementation with eCDFs uses MATLAB functions
for ease of use. First, the ecdf function (©1993–2021 Math-
Works, Inc.) calculates the eCDFs for both the target and
reference regions. We then use some basic interpolation so
that the x-axis data points are consistent across the two eCDFs.
Then the H function is simply calculated from the difference
in the two eCDFs, and the local maximums and minimums
can be found. This then gives us the necessary information to
compute the estimated gCNR as in the above equation. This
is also summarized in Algorithm 1. It should be noted that

Algorithm 1 Estimating gCNR From eCDFs (MAT-
LAB Implementation)

1 Given arrays target and reference containing the data
we want to measure the overlap of

2 Calculate the empirical CDF of target (T) and
reference (R)

[eCDFT , xT , eCDFT _low, eCDFT _up] = ecdf(target)

[eCDFR, xR, eCDFR_low, eCDFR_up] = ecdf(target)

which also gives the lower (low) and upper (up)
confidence bounds of the estimate

3 Interpolate eCDFT and eCDFR to use the same x array
for consistent sampling

4 Calculate the difference function, H

H = eCDFT _interp − eCDFR_interp

5 Find the set of local maximums and minimums of H ,
HMAX and HMIN

6 Calculate gCNR as the difference in the sum of those
sets

gCNReCDF =

∑
HMAX −

∑
HMIN

while theoretically the solution requires the local maximums
and minimums, in practical ultrasound scenarios where lesions
are being analyzed, the global maximum and minimum of the
function are often sufficient. As in Fig. 6(g), technically we
can formulate situations where the local values are required
to estimate the correct overlap, but in this work none of our
simulations or examples actually required more than the global
values.

A note on implementation, the ecdf MATLAB function uses
the nonparametric Kaplan–Meier estimator [43], which is used
to calculate the survival function from a set of data, which
in turn is the complement of the CDF. In addition, upper and
lower confidence bounds can be calculated using Greenwood’s
formula, which is all considered in the MATLAB implemen-
tation based on prior work [44], [45]. A potential advantage
of using this method is that the upper and lower confidence
bounds give us a better ability to discern whether the estimated
gCNR of two images or beamformers is sufficiently different
to make a conclusion about ranking of the methods. By default,
and as used here, the confidence is set to α = 0.05 for a 95%
confidence interval on our gCNR estimate.

III. RESULTS

A. Parametric gCNR Results
Some examples of fitting the lesion data to known distri-

butions for a −10 dB lesion are included in Fig. 7. For the
DAS data, all the models seem relatively similar, matching
the shape of the data in the histogram. However, for minimum
variance (MV) and SLSC, some distributions are poor fits. The
Rayleigh and Rician distributions seem poor fits for MV, while
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Fig. 7. Simulated −10 dB r = 2.5 mm lesions beamformed for
(a) and (b) DAS, (c) and (d) MV, and (e) and (f) SLSC. The target and
background data are shown as both a probability distribution function
and cumulative distribution function (CDF), with the indicated distribution
fits included.

the Rayleigh distribution does not fit SLSC at all. Generally,
it seems clear that fitting the MV and SLSC data is much
more challenging compared with DAS, and trying to fit the
EPT data was functionally impossible (not shown) due to the
amount of skew present in the data.

B. Nonparametric Results
A comparison of anechoic (high contrast) and −10 dB

(low contrast) lesions is shown in Fig. 8, showing how the
gCNR estimates vary by the number of bins used for each
of the histogram-based methods. Uniformly spaced histograms
show significant variability at extremely high and low numbers
of bins with the ranking of the beamformers changing at
various points. This makes it difficult to determine an optimal
binning preference as the estimates change dramatically. In
comparison, variable bin widths and rank-ordering show some
dependence on the number of bins, but the curves are much
more consistent, and importantly, the ranking of the methods
appears consistent regardless of choice. By far the most
consistent is the gCNReCDF method. These estimates align
with the variable-width and rank-ordering graphs near the
k =

√
n binning choice. Fig. 9 shows visual examples for

one anechoic lesion case and includes the histograms or plots
for the uniformly spaced, variable bin width, rank-order, and
gCNReCDF methods we investigated.

Fig. 10 shows the cases where we tested the amount of
data available, both with differently sized lesions and by
generating data from Rayleigh distributions. As discussed
in Section II-D, there is a trend of gCNR increasing and
converging as the lesion size increases, which is present in
both uniformly spaced histograms and our robust methods.
With the Rayleigh distributions, gCNR is highly variable
until enough independent data points have been generated
such that the two PDFs can be accurately estimated. This
suggests, as we theorized, that gCNR is impacted by how
much sidelobe or main lobe content is present in the lesion
area and how much total independent data are available, which
depends on lesion size. Then the convergence of gCNR as the
lesion size increases is likely driven by both the decreasing
ratio of the sidelobe content and the increasing amount of
independent data in the region. Beamformers that sharpen
the main lobe, like MV, may be able to improve gCNR for
these smaller lesions, though in the example in Fig. 9, MV
also increased the variance in the background speckle which
overall resulted in more overlap between the two regions. The
Rayleigh data also suggest that in some cases with ultrasound
data we may not have enough independent samples to get
a “true” gCNR estimate. Though these are limitations from
the perspective of using gCNR to find the overlap between
the “true” distributions of the target and background regions,
it does not prevent the use of gCNR to generally compare the
quality difference between two beamformers where the same
regions are being compared.

Fig. 11 shows the post-beamforming EPT examples from
Fig. 5, but now with the robust methods included. Again,
we see that the variable-width, rank-ordered, and eCDF meth-
ods are consistent and predict the correct gCNR at nearly
all the binning options. In this case, since the EPT data are
transforms from DAS, all the curves should be identical, which
mostly are for those three cases. However, uniformly spaced
histograms simply cannot correctly estimate the gCNR in these
cases with a reasonable choice of the number of bins.

IV. DISCUSSION

To start, we should make it clear that in the majority
of simple, homogeneous lesion cases, the uniformly spaced
histogram implementation of gCNR using k =

√
n bins and

sufficiently large ROIs works perfectly well. After all, the
only cases where it seriously struggled are the EPT lesion
cases in Figs. 5 and 11, and the EPT4 case in Fig. 9, all
of which create exceptionally skewed data where we would
expect a uniformly spaced histogram to struggle. What these
cases show is that even a normally robust rule such as k =

√
n

may be insufficient if the “effective” number of data points
is altered due to the skewness of the data. This makes it
tricky to recommend a single blanket rule for uniformly spaced
histograms.

It is easy to fall into the trap of getting lazy and picking
a nice round number of bins without verifying the resulting
histograms. More importantly, many researchers may be unfa-
miliar with gCNR and histograms such that one is unaware that
the choice of the number of bins is such a potentially critical
decision for some complex cases. We have demonstrated that
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Fig. 8. gCNR for anechoic (solid) and −10 dB (dashed) r = 2.5 mm lesions with various beamformers estimated with (a) traditional uniform bin
widths, (b) variable bin widths, and (c) rank-order uniform bin widths. The shaded regions show the standard deviation for each method. For these
cases, the number of pixels used is constant (n = 17 394 total for MLA ×2) and the number of bins is varied. For reference, k =

√
n = 132 (the

dotted line shown) and k = ⌈2n2/5
⌉ = 100. (d) Plot of the average gCNReCDF and standard deviation using eCDFs for that same data. Note that in

(a)–(c) the DAS, ADMIRE, and EPT2 curves overlap significantly.

Fig. 9. B-mode images for a selection of beamforming methods for an example simulated r = 2.5 mm anechoic lesion. The circled regions on the
DAS image indicate the lesion and background regions for gCNR calculation. Log-compressed methods are displayed with a 50-dB dynamic range.
Histograms used for estimating gCNR used k = ⌈2n2/5

⌉ = 100 for all the implementations for comparison. We additionally include the eCDF plots
for these cases, with the error representing the average distance to the upper and lower bounds of the gCNReCDF estimate.

there exists a possibility for methods to, willfully or not,
manipulate gCNR estimates by doing something as innocent
as using too many bins, which we have anecdotally witnessed.
As a result, the discussion of how to increase the robustness
or at least raise awareness of the implementation of gCNR is
warranted.

There is a certain attractiveness to being able to model
the ultrasound scatterers using parametric methods, and it is
used in several applications to characterize images. Hverven
et al. [46] showed us in previous work that many common
beamformers can be fit with Rayleigh distributions, yet others

deviate significantly. This presents the issue of determining
what models are appropriate fits, and this issue is compounded
by the common presence of adaptive beamformers. While
DAS (raw B-mode data) has a well-understood distribution
which makes fitting the data often reliable, the same is
not true for many other adaptive methods. SLSC, or post-
beamforming compression processes such as the EPT method,
may have distributions that vary widely or fail to be fit at all in
some cases. Even if a beamformer has a known distribution,
a potential pitfall of a parametric method is that for a small
enough sample of data the expected distribution may not be
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Fig. 10. Comparison of robust implementations on (a) varied lesion
sizes at −20 and −10 dB and (b) Rayleigh distributions from Fig. 2. For
the histogram-based methods, k =

√
n bins for all the cases.

fit well anyway. Speckle is naturally correlated to some extent
depending on the parameters of the acquisition, and potentially
even the beamformer used, so we may need more data than
expected if we pursue a parametric, or even histogram-based,
approach, which may not always be possible depending on the
target. This is something that would need to be considered if
further investigation was desired.

For ease of use, a histogram-based implementation may still
be best as it is straightforward and requires less consideration
compared with parametric methods. In this case, it seems rea-
sonable that a best-practices choice would be, at a minimum,
to have some specific method for choosing the number of bins.
By declaring that method and reporting the number of bins
used, this gives the reader some sense of the ratio of the
number of data points versus the number of bins used in
the analysis. This is important, since we have shown that
the number of bins and, by extension, the size of the dataset
can alter not just the gCNR estimates for each method but
potentially the ranking of the methods being compared. We
have personally found k =

√
n to be satisfactory in most cases,

though this is not always sufficient.
Perhaps the most reliable histogram-based method is to

use variable bin widths or rank-ordering, as it removes much
of the uncertainty around choosing the number of bins and
compensates for heavily skewed data. Fig. 9 shows examples
for each of these methods, demonstrating how the variable
widths change dramatically depending on the beamformer
in question, while the rank-order histograms are identical
for methods that are true transforms of each other. With
histograms, these two implementations were the only two
tested that were able to correctly match the results for DAS
and EPT methods to within an error of 0.01 in all the
circumstances. Both these implementations would seem to
make gCNR estimations via histograms more resistant to
extreme dynamic range alterations. It also does not prevent
or restrict the use of gCNR, or increase the complexity of the
interpretation of the metric, which falls in line with the goals
laid out by the authors in the original work [4].

However, as we have shown, we can produce estimates of
gCNR without the use of parametric methods or histograms
using the eCDF. In the same Fig. 9, the empirical probability
plots show that not only is the estimate relatively intuitive to
calculate but also the upper and lower bounds produce a result
with a small overall error. In addition, it works consistently

Fig. 11. Plot comparing the gCNR of (left) uniformly spaced histograms
and (right) variable-width and rank-ordered histograms of the EPT
data from Fig. 5. The dotted line indicates k =

√
n = 132, which

in particular fails for the uniformly spaced histograms. The gCNReCDF
estimate shown on the left graph and the variable-width and rank-
ordered examples show the correct estimation of gCNR across a wide
range of the number of bins.

with all the beamformers to produce nearly identical results
to the robust histogram-based implementations. In relatively
simple cases, like the simulated lesions here, the gCNR
estimate is trivial to calculate from these plots, though even in
more complex cases the full formulation we presented in (4) is
sufficient. Finally, we could even apply this empirical method
on the rank-ordered data to produce the rank-ordered version
of this metric.

Overall, Fig. 8 suggests that using a robust rule to choose
the number of bins, such as here k =

√
n, goes a long way to

producing a robust gCNR estimate, though in cases with highly
skewed data, such as in Figs. 5 and 11, this may be insufficient
without further verification. However, the use of variable
bin widths or rank-ordering your data removes much of the
concern around heavily skewed data. Finally, we have also
presented an entirely new implementation that uses eCDFs
to estimate gCNR that is highly accurate in the cases shown
here and eliminates much of the discussion around whether a
histogram is well-formed. It is robust against skewed data and
situations where there is a small amount of data available. As
these robust methods are invariant to extreme dynamic range
alterations, it also makes application straightforward, as it can
be applied to the real data at any point in the post-beamforming
process and is not even restricted to ultrasound data, just as
gCNR was originally envisioned by Rodriguez-Molares et al.
[3], [4].

There are outstanding questions and concerns related to
gCNR that may need to be addressed in the future. First, as we
saw with the differently sized lesions, there are trends that
may be more or less apparent depending on how we choose
the masks for our regions. Obviously, this is not an issue
solely for gCNR, but rather for every metric that requires
manual selection of a target and reference region. Second,
Fig. 10 clearly shows that there is some minimum amount
of independent data required for an accurate estimation of
a PDF, and for some very small targets we may not have
enough independent data to get an accurate gCNR estimate.
This confirms to us that an investigation into this threshold is
warranted in the future, as was also suggested by Rodriguez-
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Molares et al. [4] in their work. Third, it is understood that
detectability depends on lesion size and spatial resolution as
Smith et al. [2] showed with their metric, CNRψ . gCNR
only incorporates contrast and variance, similar to CNR, and
as such for a complete analysis of the performance of two
beamformers it may be insufficient alone. Finally, there is still
a question as to how different two measurements should be to
consider the performance of two image formation methods to
be different. With histograms, it is reasonable to expect that
there is some inherent variability in the estimation (as with any
estimator), such that, for example, a gCNR of 0.77 is probably
not significantly different than 0.78. eCDFs do produce upper
and lower bounds (here, 95% confidence intervals), which is
potentially valuable exactly for this purpose, and in Fig. 9,
we can probably expect that DAS and ADMIRE are of
equivalent performance, while MV and generalized coherence
factor (GCF) are similar, but lower compared with the other
two. This may be a valuable aspect to consider for future work.

V. CONCLUSION

gCNR is a powerful tool, resistant to transformations and
dynamic range alterations when properly implemented. While
gCNR implementations using histograms with uniformly
spaced bins work properly in many circumstances, we have
shown that manipulation can occur by altering the ratio of
the pixels per bin or with some extreme transformation-based
processes. Though a parametric approach is attractive, the
inability to model an arbitrary adaptive beamformer makes it
all but impossible without significantly more complex models,
making a histogram-based or nonparametric solution much
more appealing. In testing, making the histograms more robust
is straightforward, and at a minimum a rule to determine the
number of bins used, such as k =

√
n, should be reported. We

can further improve the robustness of the histograms by either
using variable bin widths (where the number of data points
per bin is approximately equal) or rank-ordering the data
and estimating gCNR from the lists of ranks. Alternatively,
we can use eCDFs to produce an estimate that relies on neither
parametric methods nor histograms, while still being robust
in all the cases we considered here. All the three methods
are much more resistant to transformations, and gCNReCDF in
particular requires no special parameter consideration, making
it arguably the most “plug-and-play” of the three methods.
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