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Abstract—Effective tissue clutter filtering is critical for non-
contrast ultrasound imaging of slow blood flow in small vessels.
Independent component analysis (ICA) has been considered by
other groups for ultrasound clutter filtering in the past and was
shown to be superior to principal component analysis (PCA)-
based methods. However, it has not been considered specifically
for slow flow applications or revisited since the onset of other slow
flow-focused advancements in beamforming and tissue filtering,
namely angled plane wave beamforming and full spatiotemporal
singular value decomposition (SVD) (i.e., PCA-based) tissue
filtering. In this work, we aim to develop a full spatiotemporal
ICA-based tissue filtering technique facilitated by plane wave
applications and compare it to SVD filtering. We compare ICA
and SVD filtering in terms of optimal image quality in simula-
tions and phantoms as well as in terms of optimal correlation
to ground truth blood signal in simulations. Additionally, we
propose an adaptive blood independent component sorting and
selection method. We show that optimal and adaptive ICA can
consistently separate blood from tissue better than principal
component analysis (PCA)-based methods using simulations and
phantoms. Additionally we demonstrate initial in vivo feasibility
in ultrasound data of a liver tumor.

Index Terms—slow blood flow, power Doppler, clutter filter,
ultrasound, independent component analysis

I. INTRODUCTION

LTRASOUND imaging of slow blood flow without con-

trast agents is difficult but desirable for several clinical
applications, including detection of tumor blood flow for
diagnosis and treatment monitoring and evaluation. One of
the main challenges is tissue clutter interference with blood.
Blood signal without contrast enhancement is weak compared
to tissue and is closer to the noise floor. Therefore, clutter
filtering is essential to extract weak blood signal. Conventional
clutter filtering relies on clear spectral separation of tissue and
blood in the slow-time frequency domain. This assumption is
usually valid for blood flow in larger vessels with reasonable
signal-to-noise ratios (SNR) and velocities that are faster
than tissue motion caused by patient and sonographer hand
motion. However, blood velocity in small vessels is slow and
comparable to tissue velocity, resulting in a spectral overlap
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in the slow-time frequency domain [1], [2]. Furthermore, the
smallest, usually unresolvable, vessels are often randomly
oriented, making it difficult to know the beam-to-flow angle for
estimating velocity. For this reason, power Doppler imaging
is used in this work and is generally best suited for slow
flow imaging because it is relatively angle independent and
computes the energy of the Doppler signal rather than velocity
[3]. However, despite the advantages of power Doppler, slow
flow imaging remains challenging due to tissue and noise
interference with blood signal.

Tissue clutter filtering for ultrasound blood flow imaging
has been thoroughly investigated for focused Doppler tech-
niques [4]-[9]. Among the most common are infinite and
finite impulse response filters (IIR and FIR, respectively)
and polynomial regression filters [9]. Although effective for
most blood flow imaging applications, the most common
filtering techniques fail to preserve slow flow signal due to the
spectral overlap problem in the slow-time frequency domain
[1], [9]. Several eigen-based filtering techniques have been
proposed as solutions to this problem because they operate in
a domain other than the frequency domain and incorporate
statistical information about the clutter and blood signals
[10]-[13]. However, these methods require sufficient temporal
sampling which is usually not achievable with conventional
focused beamforming, which typically only has 8-16 slow-
time samples [13]. To address this issue, angled plane wave
beamforming was introduced in combination with principal
component analysis (PCA)-based filtering [14]. Moreover,
with sufficient temporal sampling and therefore reasonably
similar spatiotemporal statistics, two-dimensional and higher
order decompositions may be performed [14]-[16]. How-
ever, although these PCA-based techniques circumvent the
frequency domain, they are not immune to overlap between
tissue, blood, and noise components [16], [17], and they
were shown to benefit from a time-domain adaptive tissue
clutter demodulation technique that we developed previously
to correct for tissue motion prior to filtering [18], [19]. This
suggests that tissue motion can still cause an overlap between
tissue and blood in the eigen-domain.

Independent component analysis (ICA)-based tissue filter-
ing has also been considered and was previously shown to
better separate blood from tissue and noise compared to
PCA-based filters [12], [20]. As with PCA, ICA creates data
driven basis functions that are intended to represent underlying
source signals. ICA incorporates an added restriction that the
basis functions be statistically independent, which will provide
better separation for non-gaussian source signals. Although
theoretically promising, ICA-based filtering has not been as
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extensively investigated as PCA-based filtering for ultrasound
blood flow imaging, and its fundamental limits have yet to be
evaluated with other slow flow-focused advancements, namely
angled plane wave beamforming. Additionally, because it was
applied to focused Doppler sequences in the time-domain, its
potential as a full spatiotemporal filter has yet to be evaluated.

In this work, we aim to develop a spatiotemporal ICA-based
filtering technique and compare it to SVD in terms of highest
achievable image quality. Compared to our previous prelimi-
nary work [21], we aim to more thoroughly describe our ICA
implementation and provide more substantial evidence for the
benefit of ICA using single vessel phantoms and controlled
simulations with ground truth blood signal. Additionally, we
propose a novel adaptive blood independent component sort-
ing and selection technique using a correlation-based sorting
method and a K-means clustering approach to adaptively
separate tissue and blood components. Furthermore, we apply
these methods to multiple simulation and phantom realizations
at different flow speeds, which extensively expands upon
previous work for which we used amplitude thresholding
for component sorting and selection and a single phantom
realization for validation [22]. Furthermore, we demonstrate
initial in vivo feasibility using liver tumor data.

II. THEORY AND IMPLEMENTATION
A. ICA Model

To outline our approach to ICA, we first assume a simple
signal model as follows,

D =C+B+N e R#*EXT (1)

where D is our beamformed RF signal composed of tissue
clutter (C), blood (B), and noise (N). RZ*EXT represents
the set of real numbers with dimensions Z, L, and T which
are the total number of axial, lateral, and temporal samples,
respectively. We use only real data for the analyses in this
work to simplify the ICA implementation. As in PCA/SVD
approaches to ultrasound clutter filtering [14], [15], we can
reshape D into a two-dimensional Casorati matrix, S € RMXT
in space and time, where M = Z L. PCA techniques work by
decomposing S directly into its corresponding singular vectors
and values. ICA generally works by solving for two unknowns,
A € RM*Q apd X € R9XT| related to S as follows,

S =AX 2

where X contains the unmixed source signals, A is a mix-
ing matrix containing the information for mixing the source
signals in X to produce S, and () represents the number
of independent components. ICA involves two main steps:
solving for A and then using A~' to solve for X. Many
techniques exist for solving for A. For our approach, we use a
maximum likelihood (i.e., information maximization) method
with BFGS optimization [23]-[25].

In our application of ICA, we use a transposed version
of S, with dimensions 7" by M. We also perform an initial
dimensionality reduction on S’ to remove noise using SVD
and the assumption that noise constitutes the lowest energy
singular values [12]-[16]. We then perform the optimization

on the spatial singular vectors of S only, denoted Y, as
described below,

S = VAU ¢ RT*M 3)
Y = AU = AX € REXM 4)

where V. € RT*E X € REXE and U € REXM are the
temporal singular vectors, singular values, and spatial singular
vectors of S, respectively, with noise removed, A € RF*®Q
is a square mixing matrix, X € R¥*M contains the source
signals, and £ = @ is the number of principal and independent
components corresponding to blood and tissue. We perform
ICA on the de-noised, spatial singular vectors to minimize
computational burden of the optimization algorithm. After
solving for A, we can multiply A~* by Y to get X.

Once the independent components are sorted and the prin-
cipal and independent blood components are identified, as
described in more detail in the following subsections, we can
then reconstruct the blood signal as follows,

S;)lood _ VTprcAchXBICXBlcxM c RTX]W (5)
where Bpc and Bjc are the number of blood principal
and independent components, respectively. Finally, we can

transpose and reshape S;;,,4 back to its original dimensions,
Bc RZXLXT_

B. ICA Rationale

The intention of unsupervised learning methods like PCA
and ICA is to create more efficient representations of the
underlying source signals compared to fixed bases such as
the Fourier. In the case of tissue clutter filtering, the goal is to
create bases that map tissue, blood and noise to distinct basis
components that can be readily identified to isolate the blood.
In practice, the basis components from PCA or ICA will typi-
cally have at least some overlap with all three types of physical
source signals—blood, tissue and noise [16], [17]. The goal of
PCA is to create uncorrelated bases that efficiently describe
the data variance. The goal of ICA is to create statistically
independent source bases, which also necessarily implies the
bases are uncorrelated. When the underlying sources within the
data are normally distributed multivariate random variables,
uncorrelated signals are also independent, which means that
ICA and PCA produce equivalent outcomes [26], [27].

In our implementation, ICA is not applied directly to the
Casorati matrix so it is not attempting to directly separate
tissue, blood and noise. ICA is applied to the spatial principal
components so benefits realized from ICA only imply non-
normality in the spatial dimension. After the initial dimen-
sionality reduction to suppress noise and ease computation, we
have a number of spatial principal components Y. Despite the
goals and assumptions of PCA, for any given principal vector,
Y, it is probable that both > BY, # 0 and ) CY, # 0.
(Ideally there is no noise left, but in practice noise may still
persist on many of the remaining principal vectors as well
[17].) In other words, each of the spatial principal components
will have some overlap of the underlying tissue and blood
source signals. We attempt to improve this separation using
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ICA on Y. The assumption made is that at least some part
of the blood or tissue has a non-normal distribution spatially
that will allow for better separation using ICA. This seems
at least plausible given the anatomically discrete nature of
vessels. Additionally, for ICA to improve separation, it is
not necessary that the sum of the underlying tissue source
signals be uncorrelated to the sum of the underlying blood
source signals (i.e., . CB = 0) or that C or B are themselves
non-normal, but rather that there is some set of constructible
independent components that individually have less simulta-
neous correlation with both C and B. To summarize, there is a
plausible physical rationale for why ICA applied spatially may
improve blood filtering. However, the bases formed by ICA,
like PCA, have no fundamental connection to the underlying
physics. Such bases are only a mathematical construct and
attaching physical intuition is primarily a useful exercise for
conceptualizing and developing filtering strategies. Therefore,
a direct connection between ICA or PCA and the physics is
not required as long as there exists an appropriate method for
classifying each independent component as signal or noise (i.e.
clutter).

C. Independent Component Sorting

Unlike for principal components, which are, by definition,
intuitively sorted by descending energy (i.e., tissue should
be greater than blood which should be greater than noise),
independent component ordering is challenging [26], [28]-
[30]. For our implementation, we sort according to correlation
coefficients computed between reconstructed power Doppler
images made with each individual independent component g
(PD,) and a power Doppler image made with all components
(PDg) as follows,

> (PDg.* PD,)
\/Z PDé\/Z PD2

where PDg and PD, are made by reshaping
VIXEAEXQX Q@XM g VTXEA(IEX 1X(11XM using independent
component ¢ only, respectively, back to the original
dimensions (Z by L by T') and summing the squared values
through slow-time. A power Doppler image made with
all components is equivalent to a power Doppler image
made with no tissue filtering for which tissue power will
dominate since tissue signal is stronger than blood. Therefore,
a component that produces a high correlation coefficient
likely contains tissue while a component that produces a
low correlation coefficient contains blood. Components that
contain noise that persists after the initial dimensionality
reduction will likely produce correlation coefficients that
are more comparable to tissue due to noise being more
uniformly distributed compared to blood. An example power
Doppler image made with all components and corresponding
correlation values are shown in Fig. la. Fig. lc shows
the corresponding power Doppler images made with each
individual independent component (i.e., PD,). The power
Doppler images displayed in Fig. 1 have been log compressed
and scaled for image quality purposes, but no log compression
or scaling was done for the correlation sorting.

Psort (Q) = (6)

3

D. Blood Component Selection

Once the independent components are sorted in AX, choos-
ing the appropriate cutoff between tissue and blood is also
challenging—a problem relevant for principal components as
well. To determine whether or not ICA provides any additional
benefit to PCA, it is worth comparing the two methods
under optimal conditions. However, because it is impossible to
determine optimal conditions clinically, adaptively identifying
blood components is crucial.

To determine optimal cutoffs, we perform an exhaustive
cutoff analysis using simulations and phantoms for which
we know ground truth information. For SVD, we choose
whichever cutoff & produces the highest image quality (IQ)
correlation coefficient when compared to the blood only power
Doppler image (for simulations) or whichever cutoff produces
the best blood-to-background SNR image quality metric (for
phantoms), as defined in the next section. The correlation
coefficient computed for measuring simulation image quality
is similar to Equation 6 as follows,

pIQ(kJ): Z(PDB*PDR) (7)

V2 PDL/ P

where PDpg and P D), are the power Doppler images made us-
ing blood only signal and made using principal or independent
component k as the starting blood component, respectively.
For these power Doppler images, a 2-dimensional spatial
median filter, described in more detail in the next section, is
applied before computing prq. Additionally, a Fisher trans-
formation was applied to all p;p values before taking the
mean across realizations. An inverse Fisher transformation was
then applied to the mean values for quantitative display. An
example of a simulated blood only power Doppler image is
shown in Fig. la. Figs. 1b and lc show the corresponding
power Doppler images made with each individual principal
and independent component (i.e., PDjy). Again, the power
Doppler images displayed in Fig. 1 have been log compressed
and scaled for image quality purposes, but no log compression
or scaling was done for the correlation computation. For
ICA, we use the chosen optimal SVD cutoff for the temporal
singular vector principal component filtering and then use
whichever independent component cutoff produces the highest
prq or best SNR as described above. For both methods, we
use a fixed noise cutoff to restrict variables, as indicated in
the next section.

To determine adaptive cutoffs, we perform an initial adap-
tive singular value thresholding on the principal components.
We threshold based on when the slope of the energy of the
singular values goes below a certain value, as depicted in Fig.

a [13], [15] and use this as the principal component cutoff for
SVD filtering and ICA temporal singular vector filtering. Then,
for the independent components, we perform a 100-iteration
K-means clustering on pg,r+ (i.e., Equation 6) to group the
coefficients into 3 groups. The number of groups chosen is
based on the typical shape of the correlation coefficient curve,
as shown in Fig. la, which has a steeper slope that flattens
out before dropping again. Whichever group constitutes the
independent component with the lowest pso+ value is the
group identified as blood because blood should be the least
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correlated to the no filter power Doppler image compared
to tissue and noise. Although noise is mostly removed at
this point, some will inevitably persist. Example optimal and
adaptive cutoffs are depicted in Fig. la.

Our implementation of ICA results in both principal and
independent component dimensions in the final reconstructed
blood signal, as described in Equation 5. Therefore, both
the principal and independent tissue components are removed
when reconstructing the blood signal after applying ICA,
resulting in two blood component selection techniques used for
the ICA method, as described in the preceding two paragraphs.
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Fig. 1. Example simulation realization for a 400 sample slow-time ensemble.
All displayed power Doppler images are scaled to individual maximums and
a 20dB dynamic range. (a) The power Doppler image on the left depicts
a case with blood flow only (i.e., no tissue or noise). The power Doppler
image on the right shows a case with tissue, blood, and noise with no clutter
filtering. The bottom row shows the energy of the singular values for each
principal component on the left and the correlation coefficients (as computed
in Equation 6) for each independent component on the right. Example adaptive
and optimal cutoffs are shown for each case (SVD on the left and ICA on the
right). A fixed noise cutoff of 20 was used for this example. Corresponding
power Doppler images made with each individual principal and independent
component are shown in (b) and (c), respectively.
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III. METHODS
A. Simulation Data

Field II [31] was used to simulate angled plane wave chan-
nel data of a 0.6 by 1cm area of tissue scatterers containing a
0.5mm diameter vessel of blood scatterers centered at a 2cm
depth. Blood flow was laminar and moved at a peak velocity of
Imm/s. Tissue and blood scatterers were displaced using dis-
placements estimated from 6 different hand motion phantom
data sets to generate 6 realistic tissue motion realizations. For

the hand motion data sets, 6 volunteers acquired 3s of plane
wave channel data (0° at a pulse repetition frequency of 1kHz)
of a stationary phantom (CIRS Model 040GSE, Norfolk, VA)
using a Verasonics L12-5 probe and 7.8MHz center frequency
down to a depth of 3cm. The channel data were beamformed,
up-sampled to a sampling frequency of 62.5MHz, and band-
pass filtered. Relative displacements were computed on the
first second of data using a 2D autocorrelation approach [32]
with an axial kernel size of 1.25A and lag of 1ms. Total
displacements were computed by taking the cumulative sum
of the relative displacements through slow-time. For each
hand motion realization, the displacements were interpolated
according to the location of the tissue and blood scatterers. To
generate a blood only signal for computing ground truth filter
performance (i.e., Eq. 7), tissue, blood and noise channel data
were simulated and beamformed separately and then combined
before applying tissue filtering. Blood and noise channel data
were scaled to be 40dB lower than tissue signal.

B. Phantom Data

Eight different phantoms were made using a polyvinyl
alcohol and graphite mixture and 1 freeze-thaw cycle. Each
phantom had a 0.6mm diameter wall-less vessel within a 2
by 3cm mold. Using a syringe pump, blood mimicking fluid
(CIRS Model 046, Norfolk, VA) flowed through each phantom
vessel at average velocities of either Imm/s or Smm/s. To
ensure 6 different realizations for each flow speed, 6 different
phantoms were used for each case. A hand held Verasonics
L12-5 probe was used to acquire plane wave channel data for
each realization for each flow speed.

C. In Vivo Data

Plane wave channel data were acquired from a patient
with a 4.6cm-diameter hepatocellular carcinoma (HCC) lesion
located in segment 2 of the liver right above the portal
vein. HCC tumors are known to be highly vascularized and
blood flow characteristics are used for treatment and diagnosis
[33]. Informed written consent in accordance with Vanderbilt’s
Institutional Review Board was obtained from the patient prior
to the start of the acquisition. Using a Verasonics C5-2 probe,
an interventional radiologist acquired 333ms of angled plane
wave channel data.

D. Image Acquisition and Beamforming

Channel data were acquired at a 7.8MHz transmit center
frequency for the simulation and phantom experiments and a
4.2MHz transmit center frequency for the in vivo data. For
all experiments, 9 angled plane waves evenly spaced between
-8° and 8° were transmitted at pulse repetition frequencies
(PRF) of 9kHz for 1s (simulation and phantom) or 5.4kHz
for 333ms (in vivo). Channel data were beamformed using
parallel receive beamforming and consecutive angles were
summed to synthesize transmit focusing, resulting in final
PRFs of 1kHz (simulation and phantom) and 600Hz (in vivo)
[34] and ensemble sizes of 1000-samples (simulation and
phantom) and 200-samples (in vivo). Hann apodization and
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aperture growth to achieve an F/# of 2 were implemented
during receive beamforming. Beamformed data were band-
pass filtered after being up-sampled by factors of 2 and 3
to achieve sampling frequencies of 62.5MHz (simulation and
phantom) and 50MHz (in vivo). Additionally, for in vivo
anatomical reference, immediately prior to the acquisition of
the plane wave scan, a conventional focused scan was acquired
at 6cm.

E. Post-Processing

Ensemble sizes between 20 samples (20ms) and 1000
samples (1s) were used for tissue filtering and power Doppler
estimation for each simulation and phantom data set. SVD
and ICA tissue filtering were implemented as described in
the previous section using 20, 30, and 40 as the principal
component noise cutoff for the simulations, 1mm/s phantom
data and 5mm/s phantom data, respectively (i.e., £ = 20 or
E = 30 or E = 40). For the phantom data, a noise cutoff of
20 was used for the 20 sample ensemble.

For the in vivo example, ensemble sizes of 120, 160, and 200
samples (200ms, 267ms, and 333ms) were evaluated. SVD,
ICA and a conventional 50Hz 6th order Type 1 Chebyshev
IIR high-pass filter were compared. A fixed noise cutoff of 40
(i.e., E=40) was used for SVD and ICA filtering.

Power Doppler was computed using PD(z,z) =
Z;T:l d(z,z,t)?, where d(z,,t) is beamformed and filtered
RF signal at axial position z, lateral position z, and slow-
time point ¢, for each data set. A Imm by Imm spatial
median filter was applied to each power Doppler image for
the simulations and phantoms. A 0.4mm by 0.4mm spatial
median filter was applied to the in vivo power Doppler images.
For simulated data, correlation coefficients (compared to blood
only power Doppler, i.e., p;q) were computed as in Equation
7. For all data, blood-to-background SNR, contrast-to-noise
ratio (CNR) and generalized contrast-to-noise ratio (GCNR)
[35] were computed as follows,

N .
% Zi:l PDsig(Z)
M )
ﬁ Zi:l PDypga(i)

N . M .
|% Zizl PDsig(Z) - ﬁ Zi:1 PDbkgd(m
STD(2 M| PDypgali))

SNR = 1010910 (8)

CNR = 10[0910

9

GCNR=1-0VL (10)

where N and M are the total number of pixels in the
vessel and background, respectively, PDg;q and PDyyqq are
the power Doppler values in the vessel and background,
respectively, STD stands for the standard deviation, and OV L
represents the overlap between histograms of the background
and vessel pixels. The entire region outside of the simulation or
phantom vessel was considered as background. A background
region was chosen for the in vivo data as indicated in Fig.
10. Power Doppler images were made by log compressing
the power Doppler signal (I = 10log190PD(z,x)). Images
were scaled to individual maximums and dynamic ranges were
chosen for the simulation and phantom data by computing the
average power value of the background pixels for each image.

5

This value was used as the minimum value in the image. For
the in vivo data, the images were scaled to a 15dB dynamic
range.

F. Optimal Blood Component Selection

For computing optimal image quality metrics, simulation
and phantom data were filtered using tissue cutoffs between
1 and E for SVD and between 1 and () for ICA for each
realization and ensemble. When reconstructing power Doppler
images with ICA, a fixed principal component cutoff was
used for temporal singular vector filtering. As described in
the previous section, for simulations, the principal component
cutoff that produced the highest SVD prq (Equation 7) was
used as the cutoff for temporal singular vector filtering. For
phantoms, the principal components that produced the highest
SVD SNR was used for temporal singular vector filtering.

G. Adaptive Blood Component Selection

As described in the previous section, the cutoff between tis-
sue and blood principal components was chosen by computing
when the slope of the singular values goes below a certain
threshold. The same threshold was used for all ensemble sizes
for each filter case. Thresholds of 2, 1, 0.5, and 1 were used for
determining the principal component cutoff between tissue and
blood for the simulations, Imm/s phantoms, Smm/s phantoms,
and in vivo data, respectively.

To determine the independent component cutoff between
tissue and blood, a K-means clustering was performed and is
described in more detail in Section II-C.

IV. RESULTS
A. Simulations

The simulation results demonstrate that ICA can remove
tissue clutter better than SVD by itself both optimally and
adaptively for all ensemble sizes tested. Fig. 2 shows the
optimal and adaptive results for an example realization using
a 400-sample ensemble. For this example, the adaptive ICA
K-means approach chose the cutoff that produced the highest
achievable correlation to the blood only power Doppler image.
The same was not true for SVD, but the singular value
thresholding approach chose a cutoff that was reasonably close
to the optimal cutoff. The ICA power Doppler images show
better clutter suppression and more uniform flow through the
vessel than both the optimal and adaptive SVD cases.

These qualitative results are supported quantitatively in
Figs. 3 and 4. Fig. 3 shows the correlation coefficients (prq)
computed for each ensemble size for optimal and adaptive
ICA and SVD. Optimal ICA produces correlation coefficients
that are consistently higher than optimal SVD. The same is
true for adaptive ICA compared to adaptive SVD. Adaptive
ICA also produces correlation coefficients that are higher than
optimal SVD for larger ensemble sizes, as shown in the plot
overlaying both optimal and adaptive results.

Fig. 4 shows the simulation image quality results for the
optimal and adaptive ICA and SVD approaches. Similar to the
correlation coefficients, optimal ICA produces higher SNR,
CNR, and GCNR than optimal SVD. The same is true for
adaptive ICA compared to adaptive SVD.
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Fig. 2. Optimal and adaptive simulation results for a single realization
using a 400-sample ensemble. Singular values are shown for each principal
component in the top left. The optimal and adaptively selected principal
component cutoffs are indicated in teal and purple. Correlation coefficients
for each independent component (Equation 6) are shown in the bottom left
plot. Optimal and adaptively selected independent component cutoffs are
indicated in pink and orange, respectively, and are equivalent for this case.
Corresponding optimal and adpative SVD and ICA power Doppler images

are shown on the right on dB scales. Each image is scaled to the mean of the
background pixels resulting in different dynamic ranges.
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Fig. 3. Simulated average correlation coefficients computed using Equation
7 are shown for ensemble sizes between 20 and 1000-samples (i.e., 20ms
and 1s). Optimal and adaptive results are shown in the top left and right,
respectively. Error bars indicate standard error. The plot on the bottom has
both optimal and adaptive results without error bars for visualization purposes.

B. Phantoms

Similar to the simulation results, ICA is shown to produce
superior image quality compared to SVD with the 1mm/s and
Smm/s phantom data both optimally and adaptively. Fig. 5
shows results for a single 1mm/s phantom data set using a
400-sample ensemble. For this example, the adaptive SVD
approach chose the tissue cutoff that produces optimal SNR,
therefore the adaptive and optimal SVD power Doppler images
are the same. The adaptive ICA method did not result in the
same tissue cutoff that produces optimal SNR, but it did result
in a cutoff that produces an image that has arguably better

background suppression than the optimal case. The optimal
ICA image has brighter blood pixels and more uniform flow
across the vessel laterally than the adaptive ICA image, but
the tissue clutter below the vessel is suppressed better with
adaptive ICA. Additionally, both the adaptive and optimal ICA
images demonstrate better tissue clutter suppression than the
optimal and adaptive SVD image.

Similar qualitative conclusions can be made for the Smm/s
phantom example shown in Fig. 6 for a 400-sample ensemble.
For this case, the adaptive SVD approach chose a tissue cutoff
that does not produce exactly optimal SNR, but produced very
close to optimal image quality. Similarly, adaptive ICA did
not choose an optimal tissue cutoff, but it produced image
quality that is very similar to the optimal ICA case. The ICA
and SVD images for this case are similar, but ICA produces
more uniform flow throughout the vessel. Although subtle, the
improvement with ICA is not insignificant, especially for low
SNR small vessel environments.

Optimal and adaptive ICA produced higher SNR, CNR,
and GCNR for most ensemble sizes compared to optimal and
adaptive SVD, respectively, as shown in Figs. 7 and 8 for
both phantom data sets. For the 1mm/s phantom data, GCNR
is higher when using SVD for the smallest ensemble sizes.
This is likely because of no flow being detected in the vessel,
which would result in a clear separation between bright tissue
clutter in the background region and dark blood signal in the
vessel. GCNR as we have implemented it does not account
for negated trends.

Although the adaptive ICA approach does not produce the
same image quality as optimal ICA, it does produce better
image quality than optimal SVD for larger ensemble sizes.
This was demonstrated in Fig. 3, and is also supported in
Fig. 9 which overlays all SNR results for varying ensemble
sizes for the simulations, lmm/s phantom data, and Smm/s
phantom data. The improvement with adaptive ICA is most
apparent with the simulation and 1mm/s phantom data.

C. In Vivo

To demonstrate in vivo feasibility, adaptive SVD and ICA
were applied to data of a HCC tumor in the liver. Fig. 10
shows example focused B-mode, angled plane wave B-mode,
and power Doppler images made with no filtering, adaptive
SVD, adaptive ICA, and conventional IIR filtering. Compared
to the image with no tissue filtering, a small vessel is clearly
seen in all of the cases with tissue filtering. However, the image
made using ICA shows better clutter suppression compared to
those using IIR or SVD filtering. Also, quantitatively, ICA
produced the highest image quality metrics overall compared
to IIR and SVD filtering.

D. Computation Time

Fig. 11 demonstrates the added computational time needed
to perform the proposed ICA technique for each ensemble size
for the simulations, phantoms, and in vivo data. As expected,
computation time increases with larger fixed noise cutoffs
which results in ICA optimizing over more tissue and blood
components. Also, computation time increases when larger
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spatial fields of view are used as was the case for the phantom
data compared to the simulations.

V. DISCUSSION

The exhaustive search for optimal tissue cutoffs demon-
strates the achievable benefit of ICA-based filtering compared
to SVD by itself. In all simulation and phantom experiments,
ICA produced the highest optimal SNR, CNR, and GCNR
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Fig. 6. Optimal and adaptive Smm/s phantom results for a single realization
using a 400-sample ensemble. Singular values are shown for each principal
component in the top left. The optimal and adaptively selected principal
component cutoffs are indicated in teal and purple, respectively. Correlation
coefficients for each independent component (Equation 6) are shown in the
bottom left plot. Optimal and adaptively selected independent component
cutoffs are indicated in pink and orange, respectively. Corresponding optimal
and adpative SVD and ICA power Doppler images are shown on the right
on dB scales. Each image is scaled to the mean of the background pixels
resulting in different dynamic ranges.

overall as well as the most qualitatively compelling images
of tissue clutter suppression. Although it is meaningful that
ICA produces the highest values across multiple image quality
metrics, it is difficult to draw definitive conclusions based on
these metrics due to their inherent biases and differences [19],
[35]. We address this concern by making use of controlled
simulations with which we were able to compare filtered
images to ground truth blood signal. The correlation coeffi-
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cients computed against this ground truth signal provide more
substantial evidence for the potential benefit of ICA-based
filtering compared to SVD by itself.

This work is the first to assess ICA-based filtering using
ground truth simulations in combination with other slow flow
ultrasound advancements, namely angled plane wave beam-
forming. Compared to conventional Doppler beamforming,
plane wave sequences have enabled much longer ensembles
to be achieved while maintaining reasonable frame-rates. The
results in this work demonstrate the benefit of long ensembles
for ICA filtering, as shown with ground truth correlation esti-
mates as well as image quality metrics. Similar to conclusions

made in previous work for SVD filtering [19], the ICA metrics
evaluated in this manuscript appear to plateau at larger ensem-
bles, which could be indicative of a fundamental limit or an
unaccounted for source of decorrelation. However, fixed noise
cutoffs were used for both simulations and phantoms which
could also explain the plateau, assuming the noise cutoff does
not apply equally well to all ensemble sizes. Specifically, for
small ensemble sizes, noise was likely not fully removed for
all realizations with the fixed noise cutoffs used in this work.
In contrast, for larger ensemble sizes, blood likely spanned
to components above the fixed noise cutoff and was removed
during the noise filtering. To account for this shortcoming,
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in the top center. A no filter power Doppler image is shown next to the B-
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displayed on each image. The background pixels used in these measurements
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future work will aim to incorporate adaptive noise filtering in
addition to the adaptive ICA and SVD techniques used in this
work.

Although it was useful to compute highest achievable met-
rics to determine the true potential of each technique, it is
not practical or possible in vivo. In this work we propose a
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Fig. 11. Computation time increase in minutes for ICA compared to SVD for
the simulations (top left), Imm/s phantom (top right), Smm/s phantom (bottom
left), and in vivo (bottom right) data for each ensemble size evaluated. For
the simulation and phantom data, the difference in computation times were
averaged over realizations and error bars reflect the standard error of the mean.

novel adpative K-means clustering approach in combination
with simple singular value thresholding to adaptively select
blood independent and principal components, respectively. The
simulation and phantom results demonstrate that adaptive ICA
can produce higher metrics than adpative SVD and, for larger
ensembles, optimal SVD. Additionally, the in vivo example
supports these conclusions and shows improvements in small
vessel visualization with adaptive ICA filtering compared to
adaptive SVD. Although effective for the purposes of this
work, the singular value thresholding technique is likely not
optimal for determining blood principal components. Several
more advanced adaptive SVD approaches that also incorporate
noise filtering have been proposed [15], [36] that would likely
improve the adaptive SVD metrics. However, our results sug-
gest that adaptive ICA will similarly benefit from these more
advanced principal component cutoff selection techniques.
Additionally, for our initial implementation, we perform K-
means clustering on correlation values only, but other features,
such as the power of each independent component or the root
mean square error compared to the no filtering image, could
also be included to potentially improve accuracy and facilitate
another level of sorting.

Finally, as mentioned previously, there are many ICA
methods that exist. In this work we used an information
maximization approach [23]-[25], and previously Gallippi
and Trahey used the joint approximation diagonalization of
eigen-matrices (JADE) algorithm [12], [20]. Other methods,
including fourth-order blind identification (FOBI) and fast
ICA, should also be evaluated to determine which is best
suited for the spatiotemporal clutter filtering application. Addi-
tionally, input dimensionality should also be considered. For
our implementation we perform ICA on the spatial singular
vectors. It is worth investigating further how ICA performs on
temporal singular vectors or if there is value in combining both
spatial and temporal singular vector ICA filtering. Without
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these analyses, it is possible that the true potential of ICA
has yet to be realized.

There are a few additional shortcomings of the proposed
methods that should be addressed with future work. First,
the simulation and phantom experiments do not include ves-
sel wall motion due to pulsatile flow or multiple randomly
oriented vessels, and it would be worthwhile to evaluate
these techniques on additional representative arterial and slow
flow simulations and phantoms. Additionally, computation
time was not the focus of this work, but ICA is generally
more computationally expensive compared to SVD, as shown
in Fig. 11, and real-time applications will likely be more
difficult to realize. However, several factors, including the
ICA optimization method, spatial field of view, and number of
input principal components, will greatly impact computation
time and should be considered in a larger parameter study
focused on real-time implementation. In addition to improving
computation time, smaller spatial fields of view were observed
to improve the ICA optimization. Therefore, to realize a full
field-of-view implementation of ICA, we think that block-
wise approaches could be implemented as was done for SVD
techniques [15].

VI. CONCLUSION

ICA was previously considered for ultrasound tissue filter-
ing, but it has not been revisited since the proposal of re-
cent slow flow-focused advancements. Additionally, controlled
simulations with ground truth blood signal have not been
previously used for determining the fundamental potential of
both SVD and ICA. Furthermore, adaptive independent com-
ponent sorting and selection has not been previously proposed
or investigated for the purposes of ultrasound slow blood
flow imaging. We address these shortcomings by developing
a spatiotemporal ICA-based filtering technique using angled
plane wave beamforming and evaluate it in comparison to the
well-known SVD filter. We show that optimal and adaptive
ICA can produce image quality metrics that are superior to
optimal and adaptive SVD across varying ensemble sizes using
simulations and phantom data. Furthermore, we demonstrate
initial in vivo feasibility in a liver tumor data set.
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